Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Solar radiation pressure augmented deorbiting from high altitude sun-synchronous orbits

Lucking, Charlotte and Colombo, Camilla and McInnes, Colin (2012) Solar radiation pressure augmented deorbiting from high altitude sun-synchronous orbits. In: 4S Symposium 2012, Small Satellites Systems and Services, 2012-06-04 - 2012-06-08.

[img]
Preview
PDF
Lucking_C_et_al_Pure_Solar_radiation_pressure_augmented_deorbiting_from_high_altitude_sun_synchronous_orbits_Jun_2012.pdf - Preprint

Download (1MB) | Preview

Abstract

This paper discusses the use of solar radiation pressure (SRP) augmented deorbiting to passively remove small satellites from high altitude Sun-synchronous orbits. SRP-augmented deorbiting works by deploying a light-weight reflective inflatable device to increase the area-to-mass-ratio of the spacecraft. The interactions of the orbital perturbations due to solar radiation pressure and the Earth’s oblateness cause the eccentricity of the orbit to librate at a quasi-constant semi-major axis. A large enough area-to-mass-ratio will ensure that a maximum eccentricity is reached where the spacecraft will then experience enough aerodynamic drag at the orbit pericentre to deorbit. An analytical model of the orbital evolution based on a Hamiltonian approach is used to obtain a first guess for the required area-to-mass-ratio to deorbit. This first guess is then used in a numerical propagation of the orbital elements using the Gauss’ equations to find the actual requirements as a function of altitude. The results are discussed and altitude regions for Sun-synchronous orbits are identified in which the proposed method is most effective. Finally, the implementation of the device is discussed. It is shown that passive solar radiation pressure deorbiting is a useful alternative to propulsive end-of-life manoeuvres for future high altitude Sun-synchronous missions.