Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Analysis of offshore wind turbine operation & maintenance using a novel time domain meteo-ocean modeling approach

Dinwoodie, Iain Allan and McMillan, David and Quail, Francis (2012) Analysis of offshore wind turbine operation & maintenance using a novel time domain meteo-ocean modeling approach. In: ASME Turbo Expo 2012, 2012-06-11 - 2012-06-15.

[img] PDF
Quail_F_Iain_Dinwoodie_et_al_Pure_Analysis_of_offshore_wind_turbine_operation_and_maintenance_using_a_novel_time_domain_meteo_ocean_modelling_approach_Jun_2012.pdf - Preprint

Download (1MB)

Abstract

This paper presents a novel approach to repair modeling using a time domain Auto-Regressive model to represent meteo-ocean site conditions. The short term hourly correlations, medium term access windows of periods up to days and the annual distibution of site data are captured. In addition, seasonality is included. Correlation observed between wind and wave site can be incorporated if simultaneous data exists. Using this approach a time series for both significant wave height and mean wind speed is described. This allows MTTR to be implemented within the reliability simulation as a variable process, dependent on significant wave height. This approach automatically captures site characteristics including seasonality and allows for complex analysis using time dependent constaints such as working patterns to be implemented. A simple cost model for lost revenues determined by the concurrent simulated wind speed is also presented. A preliminary investigation of the influence of component reliability and access thresholds at various existing sites on availability is presented demonstrating the abiltiy of the modeling approach to offer new insights into offshore wind turbine operation and maintenance.