Picture of scraped petri dish

Scrape below the surface of Strathprints...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Explore world class Open Access research by researchers at Strathclyde, a leading technological university.

Explore

A collaborative platform for integrating and optimising Computational Fluid Dynamics analysis requests

Whitfield, Robert and Duffy, Alexander and Gatchell, S. and Marzi, Jochen and Wang, Wenjuan (2012) A collaborative platform for integrating and optimising Computational Fluid Dynamics analysis requests. Computer-Aided Design, 44 (3). 224–240. ISSN 0010-4485

[img] PDF (A_collaborative_platform_for_integrating_and_optimising_CFD_analysis_requests)
A_collaborative_platform_for_integrating_and_optimising_CFD_analysis_requests.pdf - Submitted Version

Download (2MB)

Abstract

A Virtual Integration Platform (VIP) is described which provides support for the integration of Computer-Aided Design (CAD) and Computational Fluid Dynamics (CFD) analysis tools into an environment that supports the use of these tools in a distributed collaborative manner. The VIP has evolved through previous EU research conducted within the VRShips-ROPAX 2000 (VRShips) project and the current version discussed here was developed predominantly within the VIRTUE project but also within the SAFEDOR project. The VIP is described with respect to the support it provides to designers and analysts in coordinating and optimising CFD analysis requests. Two case studies are provided that illustrate the application of the VIP within HSVA: the use of a panel code for the evaluation of geometry variations in order to improve propeller efficiency; and, the use of a dedicated maritime RANS code (FreSCo) to improve the wake distribution for the VIRTUE tanker. A discussion is included detailing the background, application and results from the use of the VIP within these two case studies as well as how the platform was of benefit during the development and a consideration of how it can benefit HSVA in the future.