Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Langmuir-Maxwell and Langmuir-Smoluchowski boundary conditions for thermal gas flow simulations in hypersonic aerodynamics

Le, Nam Tuan Phuong and White, Craig and Reese, Jason and Myong, R.S. (2012) Langmuir-Maxwell and Langmuir-Smoluchowski boundary conditions for thermal gas flow simulations in hypersonic aerodynamics. International Journal of Heat and Mass Transfer, 55 (19-20). pp. 5032-5043. ISSN 0017-9310

[img] PDF
Reese_JM_Langmuir_Maxwell_and_Langmuir_Smoluchowski_boundary_conditions_for_thermal_gas_flow_simulations_in_hypersonic_aerodynamics_Sep_2012.pdf - Final Published Version

Download (1MB)

Abstract

The simulation of nonequilibrium thermal gas flow is important for the aerothermodynamic design of re-entry and other high-altitude vehicles. In computational fluid dynamics, the accuracy of the solution to the Navier–Stokes–Fourier (N–S–F) equations depends on the accuracy of the surface boundary conditions. We propose new boundary conditions (called the Langmuir–Maxwell and the Langmuir–Smoluchowski conditions), for use with the N–S–F equations, which combine the Langmuir surface adsorption isotherm with the Maxwell/Smoluchowski slip/jump conditions in order to capture some of the physical processes involved in gas flow over a surface. These new conditions are validated for flat plate flow, circular cylinder in cross-flow, and the flow over a sharp wedge for Mach numbers ranging from 6 to 24, and for argon and nitrogen as the working gases. Our simulation results show that the new boundary conditions give better predictions for the surface pressures, compared with published experimental and DSMC data.