Picture of scraped petri dish

Scrape below the surface of Strathprints...

Explore world class Open Access research by researchers at the University of Strathclyde, a leading technological university.

Explore

Self-tuning routine alarm analysis of vibration signals in steam turbine generators

Costello, Jason and West, Graeme and McArthur, Stephen and Campbell, Graeme (2012) Self-tuning routine alarm analysis of vibration signals in steam turbine generators. IEEE Transactions on Reliability, 61 (3). pp. 731-740. ISSN 0018-9529

[img]
Preview
PDF
JJAC_RELIAB.pdf - Submitted Version

Download (840kB) | Preview

Abstract

This paper presents a self-tuning framework for knowledge-based diagnosis of routine alarms in steam turbine generators. The techniques provide a novel basis for initialising and updating time series feature extraction parameters used in the automated decision support of vibration events due to operational transients. The data-driven nature of the algorithms allows for machine specific characteristics of individual turbines to be learned and reasoned about. The paper provides a case study illustrating the routine alarm paradigm and the applicability of systems using such techniques.