Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Encapsulating [FeFe]-hydrogenase model compounds in peptide hydrogels dramatically modifies stability and photochemistry

Frederix, Pim and Kania, Rafal and Wright, Joseph A. and Lamprou, Dimitrios and Ulijn, Rein and Pickett, Christopher J. and Hunt, Neil (2012) Encapsulating [FeFe]-hydrogenase model compounds in peptide hydrogels dramatically modifies stability and photochemistry. Dalton Transactions, 41 (42). pp. 13112-13119. ISSN 1477-9234

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A [FeFe]-hydrogenase model compound (µ-S(CH2)3S)Fe2(CO)4(PMe3)2 [1] has been encapsulated in a Low Molecular Weight (LMW) hydrogelator (Fmoc-Leu-Leu). Linear infrared absorption spectroscopy, gel melting and ultrafast time-resolved infrared spectroscopy experiments reveal significant contrasts in chemical environment and photochemistry between the encapsulated molecules and solution phase systems. Specifically, the gel provides a more rigid hydrogen bonding environment, which restricts isomerisation following photolysis while imparting significant increases in stability relative to a similarly aqueous solution. Since understanding and ultimately controlling the mechanistic role of ligands near Fe centers is likely to be crucial in exploiting artificial hydrogenases, these gels may offer a new option for future materials design involving catalysts.