Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Investigation of gas circulator response to load transients in nuclear power plant operation

Costello, Jason and West, Graeme and McArthur, Stephen and Campbell, Graeme (2012) Investigation of gas circulator response to load transients in nuclear power plant operation. In: 8th International Topical Meeting on Nuclear Plant Instrumentation and Control and Human Machine Interface Technologies, 2012-07-22 - 2012-07-26.

[img]
Preview
PDF
NPICHMIT_AMEND.pdf - Preprint

Download (767kB) | Preview

Abstract

Gas circulator units are a critical component of the Advanced Gas-cooled Reactor (AGR), one of the nuclear power plant (NPP) designs in current use within the UK. The condition monitoring of these assets is central to the safe and economic operation of the AGRs and is achieved through analysis of vibration data. Due to the dynamic nature of reactor operation, each plant item is subject to a variety of system transients of which engineers are required to identify and reason about with regards to asset health. The AGR design enables low power refueling (LPR) which results in a change in operational state for the gas circulators, with the vibration profile of each unit reacting accordingly. The changing conditions subject to these items during LPR and other such events may impact on the assets. From these assumptions, it is proposed that useful information on gas circulator condition can be determined from the analysis of vibration response to the LPR event. This paper presents an investigation into asset vibration during an LPR. A machine learning classification approach is used in order to define each transient instance and its behavioral features statistically. Classification and reasoning about the regular transients such as the LPR represents the primary stage in modeling higher complexity events for advanced event driven diagnostics, which may provide an enhancement to the current methodology, which uses alarm boundary limits.