Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Approximation of the bistatic slant range using Chebyshev polynomials

Clemente, Carmine and Soraghan, John (2012) Approximation of the bistatic slant range using Chebyshev polynomials. IEEE Geoscience and Remote Sensing Letters, 9 (4). pp. 682-686. ISSN 1545-598X

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The effectiveness of frequency domain processing algorithms in bistatic synthetic aperture radar (SAR) focusing depends critically on the accuracy of the bistatic slant range function approximation. This letter presents a new Chebyshev slant range function approximation that is shown to increase the accuracy of the analytical approximation of the bistatic point target spectrum. The performance of the new method is compared to the conventional Taylor series approximation approach in the generation of the point target spectrum. The new approach is shown to provide a more accurate approximation of the slant range function with negligible increase in processing requirements compared to the traditional Taylor series approximation. The accuracy improvement is shown to yield a more accurate spectrum that can be exploited in bistatic SAR focusing algorithms.