Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Vibrating target micro-doppler signature in bistatic SAR with a fixed receiver

Clemente, Carmine and Soraghan, John (2012) Vibrating target micro-doppler signature in bistatic SAR with a fixed receiver. IEEE Transactions on Geoscience and Remote Sensing, 50 (8). pp. 3219-3227. ISSN 0196-2892

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Bistatic synthetic aperture radar (BSAR) provides strategical, technical and economical advantages in radar imaging. Motions and micro-motions of objects in an illuminated scene introduces Doppler and micro-Doppler effects in the received radar echoes. Combining the advantages introduced by the bistatic configuration and the usefulness of the micro-Doppler signature characterization will provide a powerful tool for military and civil remote sensing applications such as target recognition and classification. In this paper, a vibrating micro-Doppler signature for a BSAR system with fixed receiver is analyzed and compared to the signature obtained in a monostatic SAR system. The micro-Doppler effect is derived for a vibrating target in the bistatic SAR. The corresponding bistatic factor is shown to be a function of the bistatic acquisition geometry. Also, the effect of the target vibration on the focused image is shown to be influenced by the acquisition geometry. The derived model is useful for micro-Doppler classification. Simulations for 94 GHz and 10 GHz are given and the results confirm the derived model.