Picture of a sphere with binary code

Making Strathclyde research discoverable to the world...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. It exposes Strathclyde's world leading Open Access research to many of the world's leading resource discovery tools, and from there onto the screens of researchers around the world.

Explore Strathclyde Open Access research content

P1H-2 particle sizing in the process industry using Hertz-Zener impact theory and acoustic emission spectra

Carson, G. and Mulholland, A.J. and Tramontana, M. and Nordon, A. and Hayward, G. (2006) P1H-2 particle sizing in the process industry using Hertz-Zener impact theory and acoustic emission spectra. In: IEEE Ultrasonics Symposium, 2006. IEEE, pp. 1406-1409. ISBN 1424402018

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The cost of implementing real-time monitoring and control of industrial processes is a significant barrier for many companies. Acoustic techniques provide complementary information to optical spectroscopic sensors and have a number of advantages: they are relatively inexpensive, can be applied non-invasively, are non-destructive, multi-point measurements are possible, opaque samples can be analysed in containers that are made from opaque materials (e.g. steel or concrete) and the analysis can be conducted in real-time. In this paper a new theoretical model is proposed which describes the transport of particles in a stirred reactor, their collision with the reactor walls, the subsequent vibrations which are then transmitted through the vessel walls, and their detection by an ultrasonic transducer. The particle-wall impact is modelled using Hertz-Zener impact theory. Experimental data is then used in conjunction with this (forward) model to form an inverse problem for the particle size distribution using a least squares cost function. Application of an integral smoothing operator to the power spectra greatly enhances the accuracy and robustness of the approach. One advantage of this new approach is that since it operates in the frequency domain, it can cope with the industrially relevant case of many particle-wall collisions. The technique will be illustrated using data from a set of controlled experiments. In the first instance a set of simplified experiments involving single particles being dropped in air onto a substrate are utilised. The second set of experiments involves particles in a carrier fluid being stirred in a reactor vessel. In each case the approach is able to successfully recover the associated particle size.