Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Orthogonal, metal-free surface modification by strain-promoted azide–alkyne and nitrile oxide–alkene/alkyne cycloadditions

Wendeln, Christian and Singh, Ishwar and Rinnen, Stefan and Schulz, Christian and Arlinghaus, Heinrich F and Burley, Glenn A and Ravoo, Bart Jan (2012) Orthogonal, metal-free surface modification by strain-promoted azide–alkyne and nitrile oxide–alkene/alkyne cycloadditions. Chemical Science, 3 (8). pp. 2479-2484. ISSN 2041-6520

[img]
Preview
PDF
orthogonal.pdf - Final Published Version

Download (1MB) | Preview

Abstract

In this article we present a fast and efficient methodology for biochemical surface patterning under extremely mild conditions. Micropatterned azide/benzaldoxime-surfaces were prepared by microcontact printing of a heterobifunctional cyclooctyne oxime linker on azide-terminated self-assembled monolayers (SAMs). Strain-promoted azide–alkyne cycloaddition (SPAAC) in combination with microcontact printing allows fast and effective surface patterning. The resulting bifunctional azide/oxime substrates could successfully be used for metal-free, orthogonal immobilization of various biomolecules by 1,3-dipolar cycloadditions at room temperature. Azide-decorated areas were modified by reaction with a cyclooctyne-conjugate using SPAAC, while benzaldoxime-decorated areas were activated by in situ oxidation to the reactive nitrile oxides and subsequent nitrile oxide cycloaddition with alkene- and alkyne-functionalized bioconjugates. In addition, orthogonal double immobilization was achieved by consecutive and independent SPAAC and nitrile oxide cycloadditions.