Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Low-complexity LSMR equalisation of FrFT-based multicarrier systems in doubly dispersive channels

Solyman, Ahmed and Weiss, Stephan and Soraghan, John (2011) Low-complexity LSMR equalisation of FrFT-based multicarrier systems in doubly dispersive channels. In: IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), 2011. IEEE, New York, pp. 461-465. ISBN 9781467307529

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The discrete fractional Fourier transform (FrFT) has been suggested to enhance performance over DFT-based multicarrier systems when transmitting over doubly-dispersive channels. In this paper, we propose a novel low-complexity equaliser for inter-symbol and inter-carrier interference arising in such multicarrier transmission system. Due to a lower spreading in the FrFT-domain compared to the DFTchannel matrix as compared to the DFT domain, the equaliser cam approximate the fractional-domain channel matrix by a band matrix. Further, we utilise the least squares minres (LSMR) algorithm in the calculation of the equalisation, which exhibits attractive numerical properties and low complexity. Simulation results demonstrate the superior performance of the proposed LSMR equaliser over benchmark schemes.