Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Frequency and phase locking of laser cavity solitons

Ackemann, Thorsten and Noblet, Yoann and Paulau, P.V. and McIntyre, Craig and Colet, Pere and Firth, William and Oppo, Gian-Luca (2012) Frequency and phase locking of laser cavity solitons. In: Spontaneous symmetry breaking, self-trapping, and josephson oscillations in nonlinear systems. Progress in Optical Science and Photonics, 1 . Springer, pp. 49-88. ISBN 9783642212062

[img]
Preview
PDF (Final version)
Ackemann_ProgressOpticalSciencePhotonics_1_49_2013_phaselocking.pdf - Final Published Version

Download (1MB) | Preview

Abstract

Self-localized states or dissipative solitons have the freedom of translation in systems with a homogeneous background. When compared to cavity solitons in coherently driven nonlinear optical systems, laser cavity solitons have the additional freedom of the optical phase. We explore the consequences of this additional Goldstone mode and analyse experimentally and numerically frequency and phase locking of laser cavity solitons in a vertical-cavity surface-emitting laser with frequency-selective feedback. Due to growth-related variations of the cavity resonance, the translational symmetry is usually broken in real devices. Pinning to different defects means that separate laser cavity solitons have different frequencies and are mutually incoherent. If two solitons are close to each other, however, their interaction leads to synchronization due to phase and frequency locking with strong similarities to the Adler-scenario of coupled oscillators.