
 1

IAC-09.C1.1.3

MGA TRAJECTORY PLANNING WITH AN ACO-INSPIRED ALGORITHM

Matteo Ceriotti
Department of Aerospace Engineering, University of Glasgow, Glasgow, United Kingdom

m.ceriotti@aero.gla.ac.uk
Massimiliano Vasile

Department of Aerospace Engineering, University of Glasgow, Glasgow, United Kingdom
m.vasile@eng.gla.ac.uk

ABSTRACT

Given a set of celestial bodies, the problem of finding an optimal sequence of gravity assist manoeuvres, deep space
manoeuvres (DSM) and transfer arcs connecting two or more bodies in the set is combinatorial in nature. The number of
possible paths grows exponentially with the number of celestial bodies. Therefore, the design of an optimal multiple gravity
assist (MGA) trajectory is a NP-hard mixed combinatorial-continuous problem, and its automated solution would greatly
improve the assessment of multiple alternative mission options in a shorter time. This work proposes to formulate the
complete automated design of a multiple gravity assist trajectory as an autonomous planning and scheduling problem. The
resulting scheduled plan will provide the planetary sequence for a multiple gravity assist trajectory and a good estimation of
the optimality of the associated trajectories. We propose the use of a two-dimensional trajectory model in which pairs of
celestial bodies are connected by transfer arcs containing one DSM. The problem of matching the position of the planet at
the time of arrival is solved by varying the pericentre of the preceding swing-by, or the magnitude of the launch excess
velocity, for the first arc. By using this model, for each departure date we can generate a full tree of possible transfers from
departure to destination. Each leaf of the tree represents a planetary encounter and a possible way to reach that planet. An
algorithm inspired by Ant Colony Optimization (ACO) is devised to explore the space of possible plans. The ants explore
the tree from departure to destination adding one node at the time: every time an ant is at a node, a probability function is
used to select one of the remaining feasible directions. This approach to automatic trajectory planning is applied to the
design of optimal transfers to Saturn and among the Galilean moons of Jupiter, and solutions are compared to those found
through traditional genetic-algorithm-based techniques.

FULL TEXT

INTRODUCTION

The complete automatic design of multiple gravity assist
trajectories (MGA), that is the definition of an optimal
sequence of planetary encounters and the definition of
one or more locally optimal trajectories for each
sequence, has been approached with several different
techniques. All of them can be classified in two main
categories: two level approaches and integrated
approaches.
Two-level approaches split the problem into two sub-
problems which lay at two different levels: one sub-
problem is to find the optimal sequence of planetary
encounters; the other is to find an optimal trajectory for
that sequence. Two-level approaches define the planetary
sequence independently of the trajectory itself. Once the
sequence (or a set of promising sequences) has been
selected, then the optimal trajectory can be searched for
within the set of selected sequences only [1]. Simplified,
low fidelity, models for representing the trajectory [2] are
used at the first level: this allows for a quick assessment
of many sequences, if not all. At the second level, a full
model is used to optimize the trajectory. Each sequence is
represented by a string of integer numbers, while the
associated trajectory is represented with a string of real

and integer numbers defining the time and the
characteristics of the events occurring along the
trajectory (e.g. launch, deep space manoeuvre, arrival at a
celestial body, number of revolutions around the Sun,
etc.). Therefore, for each sequence, there is an infinite
variety of possible trajectories.
The issue with two-level approaches is that it is difficult
to assess the optimality of a given planetary sequence
without an exhaustive search for all possible trajectories
associated with that sequence. Unfortunately, finding an
optimal trajectory is a very difficult global optimisation
problem in itself. This, combined with the fact that
usually there exist a very high number of sequences for a
given transfer problem, requires a considerable
computational effort. The computational cost can be
reduced by discarding non-promising sequences.
However, if the low-fidelity model is not accurate
enough, either some good sequences are discarded, or
many of the retained ones can result to be actually not
interesting.
As opposed to the two-level approaches, integrated
approaches define a mixed integer-continuous
optimization problem, which tackles both the search of
the sequence and the optimization of the trajectory, using
a single model, at the same time [3]. This kind of

mailto:m.ceriotti@aero.gla.ac.uk

 2

problem is known in literature as a hybrid optimization
problem [4]. The main difficulty with integrated
approaches is that a variation of even a single celestial
body in the sequence corresponds to a substantially
different set of trajectories. In addition, a variation of the
length of the sequence implies varying the number of
legs of the trajectory, and thus the total length of the
solution vector.
The automatic design of a trajectory with discrete events
was recently formulated as a hybrid optimal control
problem [5], and a solution was proposed by Conway et
al. [6] with a two level approach based on genetic
algorithms.
Here we propose to formulate the complete automated
design of a multiple gravity assist trajectory as an
autonomous planning and scheduling problem. The
resulting scheduled plan will provide the planetary
sequence for a multiple gravity assist trajectory and a
good estimation of the optimality of the associated
trajectories.
Although the proposed method can fall in the category of
the integrated approaches, the scheduling and the
planning of the events are separated at two different
levels. A specific MGA trajectory model was developed
to automatically schedule the events, if a plan is
available, and to provide a good estimation of the
feasibility and quality of a trajectory. A novel algorithm,
partially inspired by the Ant Colony Optimization (ACO)
paradigm [7], was devised to explore the space of
possible plans. ACO was originally created to solve the
Travelling Salesman Problem [8], and later successfully
applied to a number of other discrete optimisation
problems. Here the original idea behind ACO was
elaborated to solve the planning problem associated to
the design of MGA trajectories. In the literature, some
ACO-derived meta-heuristics exist for the specific
solution of different scheduling problems. In particular,
Merkle et al. [9] proposed to apply ACO to the solution
of the Resource-Constrained Project Scheduling
Problem, while Blum, in his work [10], suggested the
hybridization of Ant Colony Optimization with a
probabilistic version of Beam Search for the solution of
the Open Shop Scheduling problem.
In this paper, at first we will present the trajectory model
and the integrated scheduling of the events, then the
novel ACO-based algorithm and how the plan is
constructed. Finally, three case studies will demonstrate
the effectiveness of the proposed approach at solving
known space trajectory design problems.

TRAJECTORY MODEL

The trajectory model is devised having in mind the
planning and scheduling process and the planning
algorithm fully exploits its characteristics.
The model is based on a two-dimensional linked-conic
approximation of the trajectory and planar orbits of the
planets. The trajectory is composed of a sequence of
planar conic arcs linked together through discrete,

instantaneous events. In particular, the sequence is
continuous in position and piecewise continuous in
velocity, i.e. each event introduces a discontinuity in the
velocity of the spacecraft but not in its position. The
discrete events can be: launch, deep space manoeuvre
(DSM), swing-by, and brake.
A final assumption of the present implementation is that
all the orbits of both spacecraft and celestial bodies are
direct, thus no retrograde orbits are allowed.
In summary, the proposed trajectory model is composed
of: a launch from the departure celestial body; a series of
deep space flight legs connected through gravity assist
manoeuvres (modelled through a linked-conic
approximation); an arrival at a target celestial body. Each
one of these basic components will be explained in the
following.

Launch
The launch event is modelled as an instantaneous change
of the velocity of the spacecraft with respect to the
departure planet. The velocity change is given in terms of
modulus 0v (which depends on the capabilities of the
launcher) and in-plane direction, specified through the
angle 0 , measured counter clockwise with respect to the
planet’s orbital velocity vector Pv at time of launch 0t .

0t and 0 are free parameters of the model, while launch
velocity modulus 0v will be used to target the next
planetary encounter and solve the phasing problem, as
explained later.

Fig. 1: Geometry of the launch, and convention for

launch angle.

Swing-by
Gravity assist manoeuvres, or swing-bys, are modelled as
instantaneous changes of the velocity vector of the
spacecraft due solely to the gravity field of the planet.
Given the relative velocity vector

v before the swing-
by, the physical properties of unperturbed hyperbolic
orbital motion prescribe that v v v

 , which means
that the modulus of the outgoing velocity v

 at infinity is

known. Its direction can be computed considering the
anomaly of the outgoing asymptote (see Fig. 2):

 2arccos P p

P p

r
v r

. (1)

Pv

0v
0 0

t̂

n̂

 3

Here, P is the gravity constant of the planet, and pr is
the radius of the pericentre of the hyperbola. The value of

pr can be used to control the magnitude of the deflection

angle 2 of the incoming velocity and is
limited to be above the radius of the planet, PR , to avoid
a collision, or to be above the atmosphere to avoid a re-
entry. The direction of deflection is determined using a
signed radius of pericentre psr , such that p psr r and

 sgn 2psr .
Once is computed, the relative outgoing velocity is
calculated by rotating

v in the plane of an angle . As
for the launch velocity magnitude, the radius of
pericentre psr is tuned to meet the terminal conditions of
the transfer leg following the swing-by.

Fig. 2: Geometry of the swing-by.

Deep space flight leg
Each deep space flight leg starts at a departure planet iP
and ends at an arrival planet 1iP , and is made of two
conic arcs linked at a point iM . If the leg contains a deep
space manoeuvre, this is applied in this point, and it
produces an instantaneous change in the heliocentric
velocity vector of the spacecraft, due to an ignition of the
engines. In this model, we assume that the DSM is
performed either at the apocentre or pericentre of the
conic arc preceding the manoeuvre. In addition, the
change in velocity is tangential to that arc.
For clarity, in the remainder of this section, we neglect
the subscript index i of the leg in all the variables.

First arc
Let us assume that the spacecraft is at a given planet 1P
at time 1t . Its position coincides with that of the planet,
which is known from the 2D ephemeris. The heliocentric

velocity of the spacecraft, instead, depends on the
preceding launch or swing-by event.
If the transfer leg contains a DSM, the first step is to find
the position M and time DSMt of the deep space
manoeuvre. The position can either be the pericentre or
the apocentre, according to a binary parameter /p af . The
true anomaly of the DSM is given by

 /

0 0
1

DSM
p a

DSM

f

.

The time of the DSM DSMt is found by using the time
law. The parameter ,1revn is used to count the number of
full revolutions before the deep space manoeuvre.
At M, the DSM is applied tangentially, being the free
parameter DSMm the magnitude and direction of the
DSM: if DSMm is positive, the thrust is along the velocity
of the spacecraft, otherwise it is against the velocity of
the spacecraft. The complete state of the spacecraft at the
beginning of the second arc is thus fully determined.
If the leg does not contain any DSM, i.e. 0DSMm , the
first arc is propagated up to a fictitious point M, defined
by adding an angle to the initial true anomaly of the
spacecraft. The quantity is a small angular
displacement, larger than the machine numerical
precision, but small enough to allow for the modelling of
very short transfer legs. For this work, 0.3 rad was
chosen. The time Mt at M is found by solving again the
time law. In this case, parameters /p af and ,1revn are not
used.

Second arc
The second arc starts at point M and is propagated until
the intersection of the orbit of planet 2P . Given the
orbital parameters of the spacecraft at M, and the orbital
parameters of planet 2P , the task is to find the
intersection between the two coplanar orbits. If there are
no intersections, the leg is unfeasible, and the initial
conditions of the leg, or its parameters, have to be
changed. Otherwise, one of the two intersections is
selected according to the binary parameter 1/2f : let us
call int , the true anomalies of the selected intersection,
respectively along the orbit of the spacecraft and of the
planet. From int , the time intt at which the spacecraft
intersects 2P ’s orbit can be computed with the time law,
and considering the integer parameter ,2revn counting the
number of full revolutions between the point M and the
orbital intersection. Fig. 3 illustrates a complete leg,
including a DSM. The figure highlights that the orbital
intersection does not imply, in general, that the planet is
at the intersection point at the correct time. This issue
will be addressed in the following paragraph.

v

v

pr

 4

Fig. 3: Representation of a complete leg, starting from 1P

with either a swing-by or launch, with a DSM and
possibly multiple revolutions. The phasing problem
at 2P is not solved, as 2P at the time of intersection
is not at the intersection point.

Solution of the Phasing Problem
In order to perform a gravity assist manoeuvre or a
planetary capture, the terminal position of the spacecraft
has to match that of the planet. However, at intersection
time intt , planet 2P is at true anomaly

2P , which is

generally different from . The time of intersection is a
function of the states at the beginning of the leg, which
ultimately depend on 0v or psr depending on the starting
event. Therefore, if we introduce the symbol , such that

psr if swing-by, or 0v if launch.
The true anomalies of the intersection point and of the
planet can be expressed as and

2P . Matching
the position of the planet with that of the intersection
point at time intt (also known as the phasing problem),
then, translates into finding a value *= that satisfies
the equation (see Fig. 4):

2

* * * 0P (2)

Fig. 4: The phasing problem consists of finding λ such

that the target planet 2P is at the orbital intersection
point at the correct time. This is done by finding the
zero of the difference in true anomalies Δθ.

Fig. 5 (a) and (b) represent the function for
different transfer cases. The non-resonant case depicted
in Fig. 5 (a) shows that the function is
continuous, smooth and monotonic over the range of
interest of . Hence, the phasing problem has only one
solution. This solution can be found with a simple
Newton-Raphson method in one dimension. However,
when a resonant transfer is considered, as in Fig. 5 (b),

 is discontinuous and multiple zeros exist. Each
zero corresponds to a different resonance with the planet
(and of course a different transfer time). Since there is no
easy way, at a given transfer, to prefer one value of
over another, all the solutions need to be retained for the
evaluation of the following transfers.
In ACO-MGA, the search for the zeros of the function

 is performed with the Brent method. A set of
starting points, defining multiple intervals for the
bisection method, needs to be provided to initialize the
Brent method and are specified case by case.
Note that in the examples in Fig. 5, the parameter is
the launch excess velocity 0v . It is possible to show that
the same behaviour of holds for a leg starting
with a swing-by (i.e. psr).

a)
0 1 2 3 4 5 6 7

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

v
0

b)
2 3 4 5 6 7 8

-4

-3

-2

-1

0

1

2

3

4

v
0

Fig. 5: 0v for: (a) Earth to Venus leg following

launch from Earth. (b) Earth to Earth leg following
launch from Earth.

Selected
intersection point

Destination
planet at time

of orbit
intersection

Other
intersection

point

Tangential
DSM Δv

1P
2P

M

Planetary orbits
Transfer trajectory
Multiple revolutions

intt

Planet position at
intersection time intt

Selected intersection
point

Spacecraft orbit

2P

2P

 5

Complete trajectory
A complete trajectory is made of a sequence of transfer
legs connecting 1Pn celestial bodies 0 1, ,

PnP P P
 .

The trajectory starts from 0P at time 0t with a launch
event characterized by a departure angle 0 . The first leg
goes from 0P to 1P , then a number of swing-bys and
interplanetary legs follow, until the final planet

PnP .

Thus, a complete trajectory with 1Pn planets has Pn

legs, and 1Pn swing-bys.
The solution of Eq. (2) provides a complete scheduling of
the trajectory given the initial time 0t and the five

parameters ,1 ,2 / 1/2, , , ,DSM rev rev p a i
m n n f f for every leg

0,..., 1Pi n .
Since these five parameters fully characterize all possible
legs from a planet iP to a planet 1iP

, they are said to
define a type of transfer. Conversely, because of the
multiplicity of the zeros of Eq. (2), each type of transfer
corresponds to a set of trajectories.
Hence, assigning a value to 0t , 0 , iP ,

PnP ,

,1 ,2 / 1/2, , , ,DSM rev rev p a i
m n n f f for 0,..., 1Pi n creates a

plan, or solution, which is a tree structure in which every
branch, from root to leaves, is a trajectory. Each
trajectory is characterised by a different combination of

*
0v and *

pr for each leg.
The entire tree is a complete set of trajectories from 0P to

PnP and represents a solution of the MGA trajectory
planning problem. Thus, a plan is fully defined by
assigning a value to the parameters in Table 1 for all

0,..., 1Pi n .
An algorithm keeps track of all the trajectories in the tree,
and yields a list containing all the possible conditions of
arrival at the last reachable planet. If no trajectory in the
set associated to leg i satisfies the phasing problem, then
planet 1i cannot be reached and the algorithm
terminates. A partial or incomplete solution is the set of
parameters sufficient to describe a solution up to leg i.
Furthermore, if no solution to the phasing problem exists
at leg i, the plan is broken and the solution is said to be
infeasible at leg i. Furthermore, an upper bound on the
time of flight of the entire trajectory, or of some legs, is
introduced. Trajectories that exceed the total or partial
time of flight constraint are discarded from the list. The
information of infeasibility at a given transfer will be
used to fill in a taboo list of broken or incomplete
solutions.
For each of the trajectories found, the model computes:
the sum of all the deep space manoeuvres, or total v
and the launch excess velocity, 0v ; the relative velocity
at the last planet, v ; the total time of flight of the
trajectory, T. The objective value of the trajectory

depends on the problem and it is usually a function of
these values.
The whole model was implemented in ANSI C and
compiled as a MEX-file for interfacing with MATLAB.

Table 1: Description of the free design variables defining

a solution according to the proposed 2D model.
Description Variables
Planetary sequence 0 1, ,

PnP P P

Departure time 0t
Departure angle 0
Types of transfer
for 0, , 1Pi n ,1 ,2 / 1/2, , , ,DSM rev rev p a i

m n n f f

THE ACO-MGA ALGORITHM

The model described in the previous section yields a set
of scheduled trajectories provided that a complete or
partial plan is available. In this section, we present an
optimization procedure, based on the ant colony
optimization paradigm, to explore the space of possible
plans.
At first, the continuous space of the real parameters 0t ,

0 and DSM i
m is reduced to a finite set of states. Then,

the optimization algorithm, called ACO-MGA in the
following, operates a search in the finite space of possible
values for the design parameters. A complete description
of the algorithm ACO-MGA follows.

Solution coding
In ACO-MGA, a solution is coded through a string of
discrete values assigned to the parameters. However, the
set of parameters discussed before is inhomogeneous, as
it is made of real, integer and binary variables. In
particular, 0t , 0 and DSM i

m are real continuous
variables and need to be properly discretised. In the
present implementation of ACO-MGA, the values of the
departure date 0t and the departure angle 0 , are
assumed to be pre-assigned and therefore the two
parameters are removed from the list of the variables.
The rationale behind this choice is that, although the
launch date has a great impact on the resulting trajectory,
if an algorithm exists that is able to efficiently generate a
complete plan for a given launch date, a systematic
search can be performed along the launch window, with a
given time step. We will show in the following that a
systematic search is feasible. The angle 0 on the other
hand can very often be estimated depending on the
mission [1].
Using the additional assumptions on 0t , 0 , and fixing

0P , each solution can be coded using a vector s of
positive integers. The vector has 2 legsn components. Each
pair of consecutive components encodes all the
parameters necessary to characterise one leg of the
solution (Fig. 6). The first element of the pair is encoding

 6

the identification number of the target planet for the
corresponding leg according to the following procedure:
an ordered list ,P iq containing all the planets available as
a target for each leg i is predefined (and fixed); then, if

 2 1 1ik s

 , the target planet is the kth entry in the list

,P iq , i.e. ,(,)P i kq .
The second element of the pair is the row index of a
matrix iG containing all possible combinations of
indexes identifying the elements of the five sets:

1, 2, 3, 4, 5,, , , ,i i i i iq q q q q . These sets contain the possible
values for each one of the five parameters identifying the
type of transfer at leg i. Thus, each row of iG is a vector
representing a different type of transfer. The parameters
for the jth type of transfer for the ith leg can be obtained as
follows:

1

2

3

4

5

1, ,

,1 2, ,

,2 3, ,

/ 4, ,

1/2 5, ,

DSM i ki

rev i ki

rev i ki

p a i ki

i ki

m q

n q

n q

f q

f q

where , , , 1,...,5l i j lk G l .

Fig. 6: Solution vector s for coding a three-leg solution.

The taboo and feasible lists
A transfer from planet iP to planet 1iP can be feasible or
unfeasible, for the same set of parameters, depending on
all the preceding legs from 1 to 1i . For this reason,
when an infeasible leg is generated, it is necessary to
store the path that led to that infeasible leg. Thus, all the
parameters characterising the partial solution up to 1iP
are stored in a taboo list.
In particular, if the problem involves Pn legs, then the
same number of taboo lists are used. The taboo list of leg
i contains all the partial solutions which are unfeasible at
leg i (but feasible for legs 1 1i). Each taboo list is
stored in a matrix, which has an arbitrary number of rows
and 2i columns.
Dual to the list of taboo partial solutions, the feasible list
stores all the solutions, which are completely feasible, i.e.

reach
PnP . This is once more a matrix with an arbitrary

number of rows and 2 Pn columns.
Since each solution contained in the feasible list is
complete, then it is possible to associate an objective
value to each one of them. A scalar value can be
computed identifying the value of the trajectories. In the
following test cases, we will use, as objective value, the
v and a combination of v and T. Note that, since, in
general, there is more than one trajectory for a given
solution (i.e. for a given set of free design variables), the
objective value of a solution is given by the best
trajectory value.

Search engine
The search space is organised as an acyclic oriented tree.
Each branch of the tree represents a leg of the problem,
while each node (or leave) represents a different
destination planet and type of transfer. A population of
virtual ants are dispatched to explore the tree, searching
for an optimal solution.
The search runs for a given number of iterations ,iter maxn ,
or until a maximum number of objective function
evaluations ,eval maxn has been reached. An evaluation is a
call to the model, in order to compute the objective value
associated to a given solution.
Algorithm 1 illustrates the main iteration loop. Each
iteration consists of two steps: first, a solution generation
step, and then a solution evaluation step. In the former
step, the ants incrementally compose a set of solution
vectors, while the latter invokes the trajectory model to
assess the feasibility and the objective value of each
generated solution. When the main loop of the search
stops, the feasible list contains all the solutions, which
were found feasible, with their corresponding objective
value. The solutions are then sorted according to their
objective value.

Algorithm 1: Main ACO-MGA search engine.

1 : While , ,iter iter max eval eval maxn n n n , Do
2 : For each ant 1k m
3 : s Generate planetary sequence
4 : s Generate types of transfers
5 : If s is not discarded, S S s
6 : End For
7 : Evaluate all solutions in S
8 : Update feasible list and taboo lists
9 : Update ,iter evaln n

10 : End Do
11 : Sort feasible list according to y.

Solution generation
The tree is simultaneously explored, from root to leaves,
by m ants. At each iteration, each one of the m ants
explores the tree independently of the others, but taking
into account the information collected by all the ants at

Leg 1 Leg 2

Types of transfer

Planets

Leg 3

Solution vector

s

 7

the previous iterations, through the feasible list and the
taboo lists. As an ant moves along a branch, it
progressively composes a complete solution. At first,
each ant assigns a value to the odd entries of the solution
vector, i.e. composes the sequence of planetary
encounters, then it assigns a value to the even entries of
the solution vector, i.e. the parameters defining the type
of transfer for each legs.

Planetary sequence generation
Each ant composes a solution adding one planet at the
time. As the departure planet is given, the ant has only to
choose the destination planet for each leg. The choice is
made probabilistically by picking from the list ,P iq . The
selection depends on the discrete probability distribution
vector ,P id (one for every leg) which contains the
probability associated to each body in ,P iq . Every time
an ant is at leg i, the probability distribution vector is
reset to , 1 1 1 T

P i d , i.e. all the planets have
equal probability to be chosen, and the ant sweeps the
entire list ,P iq substituting the identification number of
each element in ,P iq into the ith odd component of the
partial solution vector s . Then, the feasible list is
searched, for all the solutions which have a (partial)
planetary sequence which matches the one in s . Say that
the jth element of ,P iq is added to s , and the resulting
partial sequence in s matches the partial sequence of the
lth solution in the feasible lists, then the probability , ,P i jd

associated to the jth element of ,P iq is increased as
follows:

 , , , ,
1

planetP i j P i j
l

d d w
y

 (3)

The amount of probability which is added depends on the
objective value ly of the matching solution in the
feasible list, and on the weight planetw . Thus, the
probability of choosing the jth planet increases according
to how many times it generates a promising sequence
(leading to a feasible solution), to the value of the
feasible solution itself, and to the parameter planetw .
This mechanism is analogous to the pheromone
deposition of standard ACO and aims at driving the
search of the ants toward planetary sequences, which
previously led to good solutions. In fact, those planets
which generate (partial) sequences that appear either
frequently in the feasible list, or rarely, but with low
objective function are selected with higher probability.
On the other hand, the probability of selecting other
planets remains positive, such that one or more ants can
probabilistically choose a planet that generates an
undiscovered sequence. Note that, if the feasible list is
empty, then all the planets have the same probability to
be selected.

The parameter planetw controls the learning rate of the
ants. A low value of planetw will make the term planet lw y
small, and thus the probability distribution will not
change much, even if the solution appears repeatedly in
the feasible list, or with low values of y . Thus, a
relatively low value of planetw will favour a global
exploration of the search space, while a high value of

planetw will greatly increase the probability of choosing a
planet which led to a feasible sequence. If the value of

planetw is high enough with respect to a reference
objective value, then the ant will preferably choose a
feasible sequence, rather than trying a new one, which
has not proven to be feasible. For these reasons, we can
say that low values of planetw will favour local
exploration of planetary sequences.
The procedure iterates for all the legs of the problem, and
for all the ants. At the end, all the odd entries of the
temporary solution s contain a target planet and the
planetary sequence is complete. The next step is to find
the type of transfers for each leg, thus filling the even
entries of s and complete the solution.

Type of transfer generation
Once an ant has filled in the odd components of a
solution s, it proceeds assigning values to the even
components. Similarly to the planet sequence generation,
for each transfer all the available types of transfer are
assigned, one at the time, to the solution s. A vector s for
which a value is assigned to both the odd and even
components up to leg i represents a partial solution.
Similarly to before, a vector ,t id contains the probability
distribution associated to the rows of the matrix iG (i.e.
to each type of transfer).
For each new partial solution, the taboo list is first
checked. If the partial solution appears in the taboo list,
then it means that this solution will be infeasible,
regardless of the way it is completed. The probability of
the type of transfer associated to that sequence is set to
zero, to avoid future selection of that type of transfer. If
the partial solutions does not appear in the taboo list, the
feasible list is searched for any matching partial solution.
For every match found, the probability distribution for
that type of transfer is modified as follows:

 , , , ,
1

typet i j t i j
l

d d w
y

 (4)

Where the weight typew is introduced with analogous
meaning to planetw . In fact, the higher the coefficient, the
higher the chances that solutions similar to the feasible
ones are generated. Conversely, a low value of typew will
favour the selection of sequences with a different type of
transfer, thus increasing the random exploration of the
whole solution space.
If, at a given leg i, all possible transfer types correspond
to partial solutions in the taboo list, the vector of

 8

probability distribution ,t id will be full of zeros. As a
consequence, the solution s (which can be partial or
complete) is discarded, and the ant can stop its
exploration of that branch of the tree. At the end of the
solution generation step, the solution s is either discarded
or completed. Once all the ants have completed their
exploration, the result is a number of solutions (less than
or equal to the number of ants m) to be evaluated.

Solution evaluation
Once a set of solutions S has been generated by the ants,
each solution has to be evaluated to assess its feasibility
and its objective value. This is done by calling the
trajectory model.
Solutions in S are evaluated one by one, by means of the
model presented before. The trajectory model can be seen
as a function which takes a solution vector s as an input,
together with 0 0 0, ,t P , and gives as an output either an
objective value y (if the solution is feasible) or the leg ul
at which the solution becomes unfeasible. If the solution
is feasible, it is stored in the feasible list and 0ul ,
otherwise it is stored in the ul

th taboo list.

CASE STUDIES

The proposed optimisation method was applied to two
case studies inspired by the Laplace [11] and Cassini [12]
missions, the former of which currently under
preliminary study by ESA, NASA and JAXA.
ACO-MGA was tested against genetic algorithms, which
are known to perform well on these kinds of problems. In
particular, it was chosen to use the genetic algorithm
implemented in MATLAB® within the Genetic
Algorithm and Direct Search Toolbox™ (GATBX), and
the Non-dominated Sorting Genetic Algorithm (NSGA-
II) [13]. Settings for all the optimisers will be specified
for each test case. While NSGA-II can deal with discrete
variables, GATBX only uses real variables: a wrapper of
the objective function was coded to round the continuous
solution vector to the closest integer.
Due to the stochastic nature of the methods involved in
the comparative tests, all the algorithms were run for 100
times. The performance index used to compare the ACO-
MGA against the other global optimisers is the success
rate: according to the theory developed in [14], 100
repetitions give an error in the determination for the exact
success rate of less than 6%.
Some preliminary tests showed that the best
performances of ACO-MGA are achieved if the
algorithm is run in 2 steps, using different sets of
parameters. In particular, in the first step, the weights

,planet typew w are set to 0: remembering Eq. (3) this choice
translates into an initial pure random search. In the
second step, weights are set to non-null values, to explore
around the feasible solutions found.
The values of ,planet typew w are set such that:

 ,planet typew w w y (5)
where y is the expected minimum value for the
objective function. In this way, choosing for example

1w , a 1 is added to the probability of a given element
every time a matching solution with objective y appears
in the feasible list. The value of probability is higher if
the objective value of the matching feasible solution is
lower.
This two-step procedure can be explained in the
following way. The first step allows a random sampling
of the solution space, with the aim of finding a good
number of feasible solutions. This is done to prevent the
algorithm to stagnate around the first feasible solution
found. The second step intensifies the search around the
feasible solutions which were found at step one. Because
of Eqs. (3) and (4), feasible solutions with low objective
value are likely to be investigated further. In addition, the
random component in the process does not forbid to keep
exploring the rest of the search space.
The test cases were run on an Intel® Pentium® 4 3 GHz
machine running Microsoft® Windows® XP.

Laplace case study
In this mission, the spacecraft reaches the sphere of
influence of Jupiter after an interplanetary flight, and
exploits a swing-by of Ganymede to get captured into the
Jovian system. At this point, multiple swing-bys of
Ganymede and Callisto are used to reduce the relative
velocity to Callisto v , in order to be captured by the
Moon and start the scientific phase.
The problem under consideration relates to the second
part of the transfer: we assume that the interplanetary
trajectory has been already optimised, including the first
Ganymede gravity assist. The resulting orbit is a 3:1
resonance (spacecraft:planet) with Ganymede. The
problem is to find the sequence of additional swing-bys,
starting from the second one of Ganymede, to reach
Callisto with low v .
For tackling this problem with ACO-MGA, a launch is
simulated from Ganymede, and the initial conditions and
type of transfer for the first leg (GG) are fixed. The other
legs, instead, have free parameters to be optimised.
The date of the first Ganymede swing-by is

0 9309.8 d, MJD2000t , corresponding to 28th June
2025, where the spacecraft leaves the planet with an
angle 0 1.2471 rad. For defining the first leg according
to the design, the following set of parameters is
considered:

,1

1,1 2,1

3,1 4,1

5,1

Ganymede

0 ;

0 ;

1

P

q

q q

q q

q

in which every relevant set contains only one element as
the leg must be fixed to match the previous part of the
trajectory. Since there is no DSM, the parameters

 9

,1 2,11revn q and / 4,11p af q are not influent. These

settings lead to a departure velocity from Ganymede of
0 5.1 km/sv , as required.

Three free legs are added to problem. For the first two,
the algorithm can choose to target Ganymede or Callisto,
while for the third and last, the target must be Callisto:

,

1,

2, 3,

4, 5,

Ganymede, Callisto

10,0,10 m/s
2,3 :

0 ; 0,1,2,3

0,1 ; 0,1

P i

i

i i

i i

i

q

q

q q

q q

,4 1,4

2,4 3,4

4,4 5,4

Callisto ; 10,0,10 m/s

0 ; 0,1,2,3

0,1 ; 0,1

P

q q

q q

q q

Small corrective DSM manoeuvres of 10 m/s can be
used, and up to 3 complete revolutions can be performed.
The number of revolutions is entirely controlled by the
parameter ,2 3,rev ii

n q . In general, there is no easy way
to identify whether the first or the second orbital
intersection is the best one, so the binary parameter 1/2 i

f
was left free to be chosen by the ants.
The radius of pericentre of the swing-bys is bounded
between 1 and 3 radii PR of the body.
The total time of flight was limited to a maximum of 100
days and the objective function for a complete solution is
the v at the final encounter with Callisto.
The average time for evaluating one solution (finding all
the trajectories that generates) of this test case is 30.34
ms, and there are 9216 distinct solutions. Thus, a
systematic approach, scanning all the solutions, would
require 4.66 min.
All the optimisers were run for up to 600 function
evaluations. GATBX and NSGA-II were run with the
settings shown in Table 2. In addition, the initial
population of GATBX is spread in the whole domain.
Since the size of the population is very important for
genetic-based algorithms, and it can affect the results
significantly, this case study was also run 100 times with
different sizes of the population (maintaining the
predefined number of total function evaluations by
varying the number of generations accordingly). For
NSGA-II, it resulted that there was no noticeable change
in the quality of the results over 100 runs. This is related
to the fact that NSGA-II is not completely converging
with only 600 function evaluations.
For GATBX, instead, results were changing significantly,
and the settings leading to the best solutions were used.
The parameters for ACO-MGA were tuned by trial and
error, running the same test case for different values of
the weights, the number of ants and the number of
iterations. The best results were obtained with the
following settings. 10 ants were used, with a first
optimisation step with 30 iterations and , 0planet typew w ,

followed by a second step of 30 more iterations with
, 20 3 km/splanet typew w . Because of the normalisation

shown in Eq. (5), the weight values appear to have
general validity, and can be applied also to other transfer
problems, as will be shown in the next case study.
Results in the form of statistical parameters over the 100
runs are presented in Table 3. All the algorithms found at
least one feasible solution in every run. The value of 2
km/s as a target value for the v has been chosen to
compute the success rate according to the procedure
proposed in [15].
The results in Table 3 point out that, while all the
algorithms find feasible solutions in all the runs, the
quality of the solution is much better for ACO-MGA.
Moreover, GATBX found a good solution only in 31% of
the runs, and NSGA-II in 39%. ACO-MGA, instead,
found a good solution in 62% of the runs.
The time for one ACO-MGA run is about 8 min. The
simplicity of the test case, together with the
implementation of ACO-MGA in a high-level language
like MATLAB, makes the use of an optimisation method
slower than the systematic scan of the whole solution
space. Note that this will not happen in the more complex
Cassini test case.

Table 2: Parameters of GATBX and NSGA-II for the

Laplace test case.
GATBX NSGA-II

Parameter Value Parameter Value
Generations 20 ngen 22
PopulationSize 30 popsize 28
StallGenLimit +Inf pcross_bin 0.5
 pmut_bin 0.5

Table 3: Comparison of the performances of ACO-MGA,

GATBX, NSGA-II over 100 runs for the Laplace
problem.

 Average best
value, km/s

% runs
< 2 km/s

% feasible
runs

ACO-MGA 2.0141 62% 100%
GATBX 2.34 31% 100%
NSGA-II 2.1074 39% 100%

The reference solution for this problem, as chosen by
ESA during a preliminary study, was re-optimised using
a full 3D model with 1 free deep space manoeuvre per
leg [16], and minimising the v : the resulting trajectory
is represented in Fig. 7 (a), starting from the second
swing-by of Ganymede. The sequence for this solution is
GGCGC, and the objective value, i.e. the final relative
velocity, is 1.96 km/sv . The solution is practically
ballistic.
The same solution was found by ACO-MGA, with an
objective value of 1.91 km/sv , and its projection is
represented in Fig. 7 (b). The similarity of the two
solutions, despite the assumptions made in the 2D model,
is clear. Table 4 compares some parameters of the 2D

 10

solution with the re-optimised 3D solution. The similarity
of the time of flights of each leg remarks that the two
solutions are the same. Slight differences are due to the
different models, and mainly to the changes of inclination
that are needed in the 3D solution.
Note that the solution chosen by ESA, and used here as a
comparison, is not the best from the point of view of the
arrival velocity. In fact, this solution was chosen by ESA
following a trade off, taking into account not only the v ,
but also the presence of DSMs, the total time of flight,
the radiation dose, and the arrival velocity vector at
Callisto.
Solutions with lower v exist, and in fact were found by
ACO-MGA. The best solution found has 1.71 km/sv ,
and corresponds to the trajectory plotted in Fig. 8. The
swing-by sequence is the same, GGCGC, but the total
time of flight is much longer (92 days), since one leg
performs 1 full revolution and another one 2 full
revolutions. Also, a DSM of 10 m/s is used.

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5
x 106

-1.5

-1

-0.5

0

0.5

1

1.5

x 106

x, km

y,
 k

m

1st and 2nd
swing-by at G

Arrival at C
Swing-by at G

Swing-by at C

10 m/s DSM

Fig. 8: Best solution found by ACO-MGA, sequence

GGCGC. The first leg is not plotted.

Table 4: Characteristics of the ACO-MGA solution and

the optimised 3D solution. The first leg is not
considered.

Variable ACO-MGA 3D optim.
2v , m/s 0 0

3v , m/s 0 0

4v , m/s 0 0

2T , d 17.4 17.52

2T , d 13.9 13.84

3T , d 5 5.10
v , km/s 1.91 1.96

Cassini case study
Cassini is the ESA-NASA mission to Saturn. The
planetary sequence designed for the mission, EVVEJS is
particularly long, allowing a substantial saving of
propellant.
Since the launch date is not taken into account in the
optimisation, in the following test it is considered fixed.
In a real mission design case, where the launch date is to
be determined, the entire launch window can be
discretised with a given time step, and a systematic scan
of several dates within the whole launch window should
be run. The launch direction 0 is also kept fixed in
these tests, although it is easy to find heuristics for
determining the value of this parameter, or discretise it
and include it in the optimisation process as an additional
variable.
For testing the ACO-MGA we will make use of a 5-leg
trajectory, with starting date 0 779 d, MJD2000t ,
corresponding to 13 November 1997. The following sets
of parameters were used, to allow DSMs in the first 3
legs only:

a)
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

x 106

-1.5

-1

-0.5

0

0.5

1

1.5

x 106

x, km

y,
 k

m

b)
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

x 106

-1.5

-1

-0.5

0

0.5

1

1.5

x 106

x, km

y,
 k

m

1st and 2nd
swing-by at G

Swing-by at G
Swing-by at C

Arrival at C

Fig. 7: (a) Reference solution (sequence GGCGC)

optimised with a full 3D model. (b) Same solution as
found by ACO-MGA. The first leg is not plotted.

Arrival at C

1st and 2nd
swing-by at G

Swing-by at G

Swing-by at C

 11

1,

2,

3,

4,

5,

1,

2,

3,

4,

5,

600, 350, 200, 0 m/s

0

1, 2,3 : 0

0,1

0,1

0

4,5 : 0

0,1

i

i

i

i

i

i

i

i

i

i

i

i

q

q

q

q

q

q
q

q
q

q

The planets available for swing-bys are
 , Venus, Earth, Jupiter , 1,..,4P i i q , while the target

planet is obviously fixed to Saturn. The number of
maximum full revolutions is fixed to 0, as it can be seen
from the choice of parameters ,1revn and ,2revn . This is
done to limit the total time of flight of the mission. Since
the trajectory is going outwards of the orbit of the Earth,
every full revolution implies more than one additional
year in the transfer time. The main aim of this case study,
then, is to assess the ability of finding promising
planetary sequences, using deep space manoeuvres. The
total number of distinct solutions for this test is
7,112,448, and the average time to evaluate a solution is
1.26 ms. This translates in 8961.7 s (or about 2.5 hours)
to systematically evaluate all the solutions.
The launch excess velocity module was bounded between
2 and 4 km/s. For the swing-bys of Earth and Venus, the
radii of pericentre span from 1.1 to 5 PR . A different
choice is adopted for Jupiter. In fact, the mass of this
planet is considerably bigger than the masses of Venus
and Earth, so higher radii of pericentre are enough to
achieve considerable deviations. It was decided to
consider the range 5 to 100 PR .
Regarding the choice of the objective function, it has to
be noted that for all the missions to outer planets, the
time of flight becomes very important, as very long
missions are needed to reach farther destinations. Even
limiting the number of complete revolutions to zero, is
not enough to guarantee a mission with reasonable
duration. Therefore, it is important to include the total
time of flight T in the objective function, in addition to
the total v . Since the current algorithm cannot deal
with multi-objective optimisation, the total time of flight
and the v are weighed inside the objective function,
such that y v T : for this test case the weight on T
was chosen to be 1 1000 km/s/d .
The total time of flight has been limited to a maximum of
100 years: limiting the time of flight to lower values
would over-constrain the search for optimal solutions.
Instead, better results are obtained by allowing long

solutions to be returned as feasible, and introducing their
duration into the objective function.
The three optimisers were run at first for 4000 and then
for 6000 function evaluations. The weights of ACO-
MGA were set to , 0planet typew w for the first step, and

, 20 7 km/splanet typew w for the second step. With these
settings, a run of ACO-MGA takes 161 s for 4000
evaluations and 273 s for 6000 evaluations. This is
considerably faster than the exhaustive scan of the
solution space.
The parameters used for GATBX and NSGA-II are
reported in Table 5. The comparative results for the two
sets of runs are shown in Table 7. It can be seen that, for
4000 evaluations, ACO-MGA found feasible solutions in
91% of the runs, compared to 25% of GATBX and 26%
of NSGA-II. The average ACO-MGA solution is also
slightly better than GATBX, and considerably better than
NSGA-II. The performances of ACO-MGA increase
significantly by using 6000 evaluations: all the runs
produce a feasible solution, and in 80% of the cases, the
best solution found is below 16 km/s. The average value
of the solution also decreases to 15.434 km/s. It is
interesting to note that, for GATBX, the average best
solution found with 6000 evaluations is higher than for
4000: this is partly balanced by the fact that it finds
feasible solutions in 28% of the runs. Another thing
worth noticing is that NSGA-II finds more often feasible
solutions than GATBX, but their quality is in average
worse.
The best solution found through ACO-MGA (sequence
EVVEJS) has an objective value of 6.9686 km/s: The
characteristics of this solution can be found in Table 6,
compared to the best solution found for the Earth-Saturn
transfer problem (see http://www.esa.int/gsp/ACT/inf/op/
globopt/edvdvdedjds.htm) found with MIDACO and
reproduced with the model in [3]. The trajectory of the
ACO-MGA solution is shown in Fig. 9 (a), while the 3D
reference solution is in Fig. 9 (b).

Table 5. Parameters of GATBX and NSGA-II for the

Cassini test case.
GATBX NSGA-II

Parameter Value Parameter Value
Common parameters

StallGenLimit +Inf pcross_bin 0.5
 pmut_bin 0.5

4000 function evaluations
Generations 20 ngen 200
PopulationSize 200 popsize 20

6000 function evaluations
Generations 30 ngen 300
PopulationSize 200 popsize 20

 12

It is interesting to sort the feasible sequences found by
ACO-MGA according to the best objective value that
they can achieve. The bar graph in Fig. 10 shows the
outcome: note that every sequence has a trajectory
associated to it, modelled as shown before, and thus
taking into account the phasing problem. This means that
these solutions could be re-optimised with a more
detailed model (in particular including the third
dimension), leading to actual transfer solutions. This
means that ACO-MGA is a powerful tool to find feasible
sequences and corresponding first-guess solutions.

Launch date analysis
As mentioned before, the algorithm, at the current state,
does not perform any kind of search on the launch date

0t . In fact, this variable is not even included in the
solution vector s. Rather, if the launch date is not fixed,
but a launch window is available, a systematic scan can
be performed to find the best launch date, and the
corresponding solutions. This procedure is not always
applicable: in fact, if re-running the algorithm for a small

Table 7. Comparison of the performances of ACO-MGA,
GATBX, NSGA-II over 100 runs for the Cassini
problem.

Optimiser Average best
value, km/s

% runs
< 16 km/s

% feasible
runs

4000 function evaluations
ACO-MGA 16.24 44% 91%

GATBX 16.349 14% 25%
NSGA-II 20.426 5% 26%

6000 function evaluations
ACO-MGA 15.434 80% 100%

GATBX 16.526 17% 28%
NSGA-II 20.122 7% 37%

Table 6. Characteristics of the ACO-MGA solution and
the reference solutions.
Variable ACO-MGA Reference

0v , km/s 3.14 3.259

1v , m/s 600 480

2v , m/s 350 398

3v , 4v , 5v , m/s 0 0
v , km/s 4.21 4.246

1T , d 168 167

2T , d 423 424

3T , d 53 53

4T , d 596 589

5T , d 2290 2200

a)

-12 -10 -8 -6 -4 -2 0 2 4
x 108

-2

0

2

4

6

8

10

12
x 108

x [km]

y
[k

m
]

DSM

Arrival at S

Swing-by at J

Swing-by at E
1st swing-by

at V
2nd swing-by

at V

DSM

 b)
-12 -10 -8 -6 -4 -2 0 2 4

x 108

-2

0

2

4

6

8

10

12
x 108

x [km]

y
[k

m
]

Swing-by at J

Arrival at S

2nd swing-by
at V

1st swing-by
at V

Swing-by at E
DSM

DSM DSM

DSM

Fig. 9: (a) ACO-MGA solution; (b) Cassini reference solution.

EVVEJS EVVEES EVEEJS EVEEES EVVVES EVVVVS
0

5

10

15

20

25

Sequence

y,
 k

m
/s

Fig. 10: Best objective values found for each sequence.

All the other sequences are either unfeasible or with
a very high objective.

 13

change in the launch date, the solutions that ACO-MGA
finds are substantially different, then the systematic scan
along 0t is not feasible, and this variable must be taken
into account in the optimization process. If, on the other
hand, a small displacement along 0t causes a small
change in the best solution found (e.g. same planetary
sequence, possibly different types of transfers, similar
objective value), then the systematic scan is a tool for
identifying the promising launch possibilities.
A test for verifying this assertion was run using the
BepiColombo [15] transfer problem. BepiColombo is a
multiple gravity assist mission to Mercury, currently
under study at ESA and JAXA. In Ref. [15] an optimal
transfer solution is provided, using two swing-by of
Venus to reach Mercury (sequence EVVMe). The
optimal launch date is found on 15 August 2013, i.e.

0 4974.5 d, MJD2000t .
ACO-MGA was run on this transfer problem, leaving the
choice of the two swing-bys among Mercury, Venus and
Earth, and leaving free other transfer parameters, like the
number of revolutions. The objective is to minimise the
relative velocity v at Mercury.
Five different launch dates, in a window of 10 days
around the one chosen by ESA, were considered, and for
each one of them, 100 runs were used. The corresponding
best solution values are found in Table 8. The result is
that the best solution is found about 1 day before 0t

 ,
while earlier or later launches become less convenient. In
addition, all the solutions around the ideal launch date
have the same planetary sequence of swing-bys.
The discrepancy between the value of v found by ACO-
MGA and the one in [15] has two causes: the first is that
ACO-MGA does not take into account the inclination of
the planets, and the orbit of Mercury is highly inclined.
The second is that the ESA solution was found as a part
of a longer trajectory, and thus with a different objective.
The same reasons explain why, according to ACO-MGA,
the ideal launch date is 1 day earlier. As a matter of fact,
this is not a problem, and a subsequent local optimisation
of the ACO-MGA solutions with a full model would tune
the launch date.
Thus, we can conclude that the systematic search can be
exploited to find optimal launch dates.

Table 8: Best solutions to Mercury found by ACO-MGA

for different launch dates.

Launch date 0t Optimal
sequence y v , km/s

0 5 dt EVVMe 5.98

0 1 dt EVVMe 5.84

0t
 EVVMe 6.10

0 1 dt EVVMe 6.62

0 5 dt EVVMe 6.72

CONCLUSION

The paper introduced a novel formulation of the
automatic complete trajectory planning problem and
proposed a new algorithm (ACO-MGA), based on the ant
colony paradigm, to generate optimal solutions to this
problem. Each solution is a complete, unscheduled plan.
Each plan is then processed through a specific model that
efficiently generates families of scheduled trajectories for
multi-gravity assist transfers. The 2D trajectory model
proved to be accurate enough to closely reproduce known
MGA transfers even with moderate inclinations.
Furthermore, the scheduling of the trajectories is fast and
reliable allowing for the evaluations of thousands of
plans in a short time.
ACO-MGA operates an effective search in the finite
space of possible plans. The algorithm demonstrated a
remarkable ability to find good solutions with a very high
success rate, outperforming known implementations of
genetic algorithms. As ACO-MGA requires very little
information on the MGA problem under investigation, it
represents a valuable tool for the complete automatic
design of future space missions. Future work aims at a
more efficient handling of the lists, which is currently the
major bottleneck of the ACO-MGA implementation.

REFERENCES

1. A. E. Petropoulos, J. M. Longuski, E. P. Bonfiglio,
“Trajectories to Jupiter via gravity assists from
Venus, Earth, and Mars”, Journal of Spacecraft and
Rockets, vol. 37, n. 6, p. 776-783, 2000

2. A. V. Labunsky, O. V. Papkov, K. G. Sukhanov,
“Multiple gravity assist interplanetary trajectories”,
Earth Space Institute Book Series, Gordon and
Breach Science Publishers, 1998

3. M. Vasile, P. De Pascale, “Preliminary design of
multiple gravity-assist trajectories”, Journal of
Spacecraft and Rockets, vol. 43, n. 4, p. 794-805,
2006

4. O. Von Stryk, M. Glocker, “Decomposition of
mixed-integer optimal control problems using
branch and bound and sparse direct collocation”, in
Proceedings of ADPM 2000 – The 4th International
Conference on Automation of Mixed Processes:
Hybrid Dynamic Systems, Dortmund, Germany,
2000

5. I. M. Ross, C. N. D'Souza, “Hybrid optimal control
framework for mission planning”, Journal of
Guidance, Control, and Dynamics, vol. 28, n. 4, p.
686-697, 2005

6. B. J. Wall, B. A. Conway, “Genetic algorithms
applied to the solution of hybrid optimal control
problems in astrodynamics”, Journal of Global
Optimization, vol. 44, n. 4, p. 493-508, 2009

7. M. Dorigo, T. Stützle, “Ant colony optimization”,
The MIT Press, Cambridge, Massachusetts, 2004

8. M. Dorigo, L. M. Gambardella, “Ant colony system:
A cooperative learning approach to the traveling
salesman problem”, IEEE Transactions on

 14

Evolutionary Computation, vol. 1, n. 1, p. 53-66,
1997

9. D. Merkle, M. Middendorf, H. Schmeck, “Ant
colony optimization for resource-constrained project
scheduling”, IEEE Transactions on Evolutionary
Computation, vol. 6, n. 4, p. 333-346, 2002

10. C. Blum, “Beam-ACO - Hybridizing ant colony
optimization with beam search: An application to
open shop scheduling”, Computers and Operations
Research, vol. 32, n. 6, p. 1565-1591, 2005

11. ESA, “Laplace mission summary”, available from:
http://sci.esa.int/science-
e/www/area/index.cfm?fareaid=107, cited 9
September 2008

12. F. Peralta, S. Flanagan, “Cassini interplanetary
trajectory design”, Control Engineering Practice,
vol. 3, n. 11, p. 1603-10, 1995

13. K. Deb, S. Agrawal, A. Pratap, T. Meyarivan, “A
fast elitist non-dominated sorting genetic algorithm
for multi-objective optimization: NSGA-II”, in

Proceedings of 6th International Conference on
Parallel Problem Solving from Nature, PPSN VI,
Paris, France, 2000

14. M. Vasile, E. Minisci, M. Locatelli, “On testing
global optimization algorithms for space trajectory
design”, in Proceedings of AIAA/AAS Astrodynamics
Specialist Conference and Exhibit, Honolulu,
Hawaii, 2008

15. D. Garcia Yárnoz, P. De Pascale, R. Jehn, S.
Campagnola, C. Corral, et al., “BepiColombo
Mercury cornerstone consolidated report on mission
analysis”, ESA-ESOC Mission Analysis Office,
MAO Working Paper No. 466, Darmstadt, 2006

16. M. Ceriotti, M. Vasile, C. Bombardelli, “An
incremental algorithm for fast optimisation of
multiple gravity assist trajectories”, in Proceedings
of 58th International Astronautical Congress,
Hyderabad, India, 2007

