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ABSTRACT 

 
Given a set of celestial bodies, the problem of finding an optimal sequence of gravity assist manoeuvres, deep space 
manoeuvres (DSM) and transfer arcs connecting two or more bodies in the set is combinatorial in nature. The number of 
possible paths grows exponentially with the number of celestial bodies. Therefore, the design of an optimal multiple gravity 
assist (MGA) trajectory is a NP-hard mixed combinatorial-continuous problem, and its automated solution would greatly 
improve the assessment of multiple alternative mission options in a shorter time. This work proposes to formulate the 
complete automated design of a multiple gravity assist trajectory as an autonomous planning and scheduling problem. The 
resulting scheduled plan will provide the planetary sequence for a multiple gravity assist trajectory and a good estimation of 
the optimality of the associated trajectories. We propose the use of a two-dimensional trajectory model in which pairs of 
celestial bodies are connected by transfer arcs containing one DSM. The problem of matching the position of the planet at 
the time of arrival is solved by varying the pericentre of the preceding swing-by, or the magnitude of the launch excess 
velocity, for the first arc. By using this model, for each departure date we can generate a full tree of possible transfers from 
departure to destination. Each leaf of the tree represents a planetary encounter and a possible way to reach that planet. An 
algorithm inspired by Ant Colony Optimization (ACO) is devised to explore the space of possible plans. The ants explore 
the tree from departure to destination adding one node at the time: every time an ant is at a node, a probability function is 
used to select one of the remaining feasible directions. This approach to automatic trajectory planning is applied to the 
design of optimal transfers to Saturn and among the Galilean moons of Jupiter, and solutions are compared to those found 
through traditional genetic-algorithm-based techniques. 
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INTRODUCTION 

The complete automatic design of multiple gravity assist 
trajectories (MGA), that is the definition of an optimal 
sequence of planetary encounters and the definition of 
one or more locally optimal trajectories for each 
sequence, has been approached with several different 
techniques. All of them can be classified in two main 
categories: two level approaches and integrated 
approaches. 
Two-level approaches split the problem into two sub-
problems which lay at two different levels: one sub-
problem is to find the optimal sequence of planetary 
encounters; the other is to find an optimal trajectory for 
that sequence. Two-level approaches define the planetary 
sequence independently of the trajectory itself. Once the 
sequence (or a set of promising sequences) has been 
selected, then the optimal trajectory can be searched for 
within the set of selected sequences only [1]. Simplified, 
low fidelity, models for representing the trajectory [2] are 
used at the first level: this allows for a quick assessment 
of many sequences, if not all. At the second level, a full 
model is used to optimize the trajectory. Each sequence is 
represented by a string of integer numbers, while the 
associated trajectory is represented with a string of real 

and integer numbers defining the time and the 
characteristics of the events occurring along the 
trajectory (e.g. launch, deep space manoeuvre, arrival at a 
celestial body, number of revolutions around the Sun, 
etc.). Therefore, for each sequence, there is an infinite 
variety of possible trajectories. 
The issue with two-level approaches is that it is difficult 
to assess the optimality of a given planetary sequence 
without an exhaustive search for all possible trajectories 
associated with that sequence. Unfortunately, finding an 
optimal trajectory is a very difficult global optimisation 
problem in itself. This, combined with the fact that 
usually there exist a very high number of sequences for a 
given transfer problem, requires a considerable 
computational effort. The computational cost can be 
reduced by discarding non-promising sequences. 
However, if the low-fidelity model is not accurate 
enough, either some good sequences are discarded, or 
many of the retained ones can result to be actually not 
interesting. 
As opposed to the two-level approaches, integrated 
approaches define a mixed integer-continuous 
optimization problem, which tackles both the search of 
the sequence and the optimization of the trajectory, using 
a single model, at the same time [3]. This kind of 
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problem is known in literature as a hybrid optimization 
problem [4]. The main difficulty with integrated 
approaches is that a variation of even a single celestial 
body in the sequence corresponds to a substantially 
different set of trajectories. In addition, a variation of the 
length of the sequence implies varying the number of 
legs of the trajectory, and thus the total length of the 
solution vector. 
The automatic design of a trajectory with discrete events 
was recently formulated as a hybrid optimal control 
problem [5], and a solution was proposed by Conway et 
al. [6] with a two level approach based on genetic 
algorithms. 
Here we propose to formulate the complete automated 
design of a multiple gravity assist trajectory as an 
autonomous planning and scheduling problem. The 
resulting scheduled plan will provide the planetary 
sequence for a multiple gravity assist trajectory and a 
good estimation of the optimality of the associated 
trajectories. 
Although the proposed method can fall in the category of 
the integrated approaches, the scheduling and the 
planning of the events are separated at two different 
levels. A specific MGA trajectory model was developed 
to automatically schedule the events, if a plan is 
available, and to provide a good estimation of the 
feasibility and quality of a trajectory. A novel algorithm, 
partially inspired by the Ant Colony Optimization (ACO) 
paradigm [7], was devised to explore the space of 
possible plans. ACO was originally created to solve the 
Travelling Salesman Problem [8], and later successfully 
applied to a number of other discrete optimisation 
problems. Here the original idea behind ACO was 
elaborated to solve the planning problem associated to 
the design of MGA trajectories. In the literature, some 
ACO-derived meta-heuristics exist for the specific 
solution of different scheduling problems. In particular, 
Merkle et al. [9] proposed to apply ACO to the solution 
of the Resource-Constrained Project Scheduling 
Problem, while Blum, in his work [10], suggested the 
hybridization of Ant Colony Optimization with a 
probabilistic version of Beam Search for the solution of 
the Open Shop Scheduling problem. 
In this paper, at first we will present the trajectory model 
and the integrated scheduling of the events, then the 
novel ACO-based algorithm and how the plan is 
constructed. Finally, three case studies will demonstrate 
the effectiveness of the proposed approach at solving 
known space trajectory design problems. 

TRAJECTORY MODEL 

The trajectory model is devised having in mind the 
planning and scheduling process and the planning 
algorithm fully exploits its characteristics. 
The model is based on a two-dimensional linked-conic 
approximation of the trajectory and planar orbits of the 
planets. The trajectory is composed of a sequence of 
planar conic arcs linked together through discrete, 

instantaneous events. In particular, the sequence is 
continuous in position and piecewise continuous in 
velocity, i.e. each event introduces a discontinuity in the 
velocity of the spacecraft but not in its position. The 
discrete events can be: launch, deep space manoeuvre 
(DSM), swing-by, and brake. 
A final assumption of the present implementation is that 
all the orbits of both spacecraft and celestial bodies are 
direct, thus no retrograde orbits are allowed. 
In summary, the proposed trajectory model is composed 
of: a launch from the departure celestial body; a series of 
deep space flight legs connected through gravity assist 
manoeuvres (modelled through a linked-conic 
approximation); an arrival at a target celestial body. Each 
one of these basic components will be explained in the 
following. 

Launch 
The launch event is modelled as an instantaneous change 
of the velocity of the spacecraft with respect to the 
departure planet. The velocity change is given in terms of 
modulus 0v  (which depends on the capabilities of the 
launcher) and in-plane direction, specified through the 
angle 0 , measured counter clockwise with respect to the 
planet’s orbital velocity vector Pv  at time of launch 0t . 

0t  and 0  are free parameters of the model, while launch 
velocity modulus 0v  will be used to target the next 
planetary encounter and solve the phasing problem, as 
explained later. 
 

 
Fig. 1: Geometry of the launch, and convention for 

launch angle. 

Swing-by 
Gravity assist manoeuvres, or swing-bys, are modelled as 
instantaneous changes of the velocity vector of the 
spacecraft due solely to the gravity field of the planet.  
Given the relative velocity vector 

v  before the swing-
by, the physical properties of unperturbed hyperbolic 
orbital motion prescribe that v v v 

    , which means 
that the modulus of the outgoing velocity v


 at infinity is 

known. Its direction can be computed considering the 
anomaly of the outgoing asymptote (see Fig. 2): 
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Here, P  is the gravity constant of the planet, and pr  is 
the radius of the pericentre of the hyperbola. The value of 

pr  can be used to control the magnitude of the deflection 

angle  2      of the incoming velocity and is 
limited to be above the radius of the planet, PR , to avoid 
a collision, or to be above the atmosphere to avoid a re-
entry. The direction of deflection is determined using a 
signed radius of pericentre psr , such that p psr r  and 

  sgn 2psr     . 
Once   is computed, the relative outgoing velocity is 
calculated by rotating 

v  in the plane of an angle  . As 
for the launch velocity magnitude, the radius of 
pericentre psr  is tuned to meet the terminal conditions of 
the transfer leg following the swing-by. 
 

 
Fig. 2: Geometry of the swing-by. 

Deep space flight leg 
Each deep space flight leg starts at a departure planet iP  
and ends at an arrival planet 1iP , and is made of two 
conic arcs linked at a point iM . If the leg contains a deep 
space manoeuvre, this is applied in this point, and it 
produces an instantaneous change in the heliocentric 
velocity vector of the spacecraft, due to an ignition of the 
engines. In this model, we assume that the DSM is 
performed either at the apocentre or pericentre of the 
conic arc preceding the manoeuvre. In addition, the 
change in velocity is tangential to that arc. 
For clarity, in the remainder of this section, we neglect 
the subscript index i of the leg in all the variables. 

First arc 
Let us assume that the spacecraft is at a given planet 1P  
at time 1t . Its position coincides with that of the planet, 
which is known from the 2D ephemeris. The heliocentric 

velocity of the spacecraft, instead, depends on the 
preceding launch or swing-by event. 
If the transfer leg contains a DSM, the first step is to find 
the position M and time DSMt  of the deep space 
manoeuvre. The position can either be the pericentre or 
the apocentre, according to a binary parameter /p af . The 
true anomaly of the DSM is given by 

 /

0 0
1

DSM
p a

DSM

f
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The time of the DSM DSMt  is found by using the time 
law. The parameter ,1revn  is used to count the number of 
full revolutions before the deep space manoeuvre. 
At M, the DSM is applied tangentially, being the free 
parameter DSMm  the magnitude and direction of the 
DSM: if DSMm  is positive, the thrust is along the velocity 
of the spacecraft, otherwise it is against the velocity of 
the spacecraft. The complete state of the spacecraft at the 
beginning of the second arc is thus fully determined. 
If the leg does not contain any DSM, i.e. 0DSMm  , the 
first arc is propagated up to a fictitious point M, defined 
by adding an angle   to the initial true anomaly of the 
spacecraft. The quantity   is a small angular 
displacement, larger than the machine numerical 
precision, but small enough to allow for the modelling of 
very short transfer legs. For this work, 0.3 rad   was 
chosen. The time Mt  at M is found by solving again the 
time law. In this case, parameters /p af  and ,1revn  are not 
used. 

Second arc 
The second arc starts at point M and is propagated until 
the intersection of the orbit of planet 2P . Given the 
orbital parameters of the spacecraft at M, and the orbital 
parameters of planet 2P , the task is to find the 
intersection between the two coplanar orbits. If there are 
no intersections, the leg is unfeasible, and the initial 
conditions of the leg, or its parameters, have to be 
changed. Otherwise, one of the two intersections is 
selected according to the binary parameter 1/2f : let us 
call int ,   the true anomalies of the selected intersection, 
respectively along the orbit of the spacecraft and of the 
planet. From int , the time intt  at which the spacecraft 
intersects 2P ’s orbit can be computed with the time law, 
and considering the integer parameter ,2revn  counting the 
number of full revolutions between the point M and the 
orbital intersection. Fig. 3 illustrates a complete leg, 
including a DSM. The figure highlights that the orbital 
intersection does not imply, in general, that the planet is 
at the intersection point at the correct time. This issue 
will be addressed in the following paragraph. 
 


 

  



v  



v  
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Fig. 3: Representation of a complete leg, starting from 1P  

with either a swing-by or launch, with a DSM and 
possibly multiple revolutions. The phasing problem 
at 2P  is not solved, as 2P  at the time of intersection 
is not at the intersection point. 

Solution of the Phasing Problem 
In order to perform a gravity assist manoeuvre or a 
planetary capture, the terminal position of the spacecraft 
has to match that of the planet. However, at intersection 
time intt , planet 2P  is at true anomaly 

2P , which is 

generally different from  . The time of intersection is a 
function of the states at the beginning of the leg, which 
ultimately depend on 0v  or psr  depending on the starting 
event. Therefore, if we introduce the symbol  , such that 

psr   if swing-by, or 0v   if launch. 
The true anomalies of the intersection point and of the 
planet can be expressed as     and  

2P  . Matching 
the position of the planet with that of the intersection 
point at time intt  (also known as the phasing problem), 
then, translates into finding a value *=   that satisfies 
the equation (see Fig. 4): 
      

2

* * * 0P          (2) 
 

 
Fig. 4: The phasing problem consists of finding λ such 

that the target planet 2P  is at the orbital intersection 
point at the correct time. This is done by finding the 
zero of the difference in true anomalies Δθ. 

Fig. 5 (a) and (b) represent the function     for 
different transfer cases. The non-resonant case depicted 
in Fig. 5 (a) shows that the function     is 
continuous, smooth and monotonic over the range of 
interest of  . Hence, the phasing problem has only one 
solution. This solution can be found with a simple 
Newton-Raphson method in one dimension. However, 
when a resonant transfer is considered, as in Fig. 5 (b), 

    is discontinuous and multiple zeros exist. Each 
zero corresponds to a different resonance with the planet 
(and of course a different transfer time). Since there is no 
easy way, at a given transfer, to prefer one value of   
over another, all the solutions need to be retained for the 
evaluation of the following transfers. 
In ACO-MGA, the search for the zeros of the function 

    is performed with the Brent method. A set of 
starting points, defining multiple intervals for the 
bisection method, needs to be provided to initialize the 
Brent method and are specified case by case. 
Note that in the examples in Fig. 5, the parameter   is 
the launch excess velocity 0v . It is possible to show that 
the same behaviour of     holds for a leg starting 
with a swing-by (i.e. psr  ). 
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Fig. 5:  0v  for: (a) Earth to Venus leg following 

launch from Earth. (b) Earth to Earth leg following 
launch from Earth. 

Selected 
intersection point 

Destination 
planet at time 

of orbit 
intersection 

Other 
intersection 

point 

Tangential 
DSM Δv 

1P  
2P  

M  

Planetary orbits 
Transfer trajectory 
Multiple revolutions 

  
intt  

Planet position at 
intersection time intt  

Selected intersection 
point 

Spacecraft orbit 

  

    
 

2P   

2P  



 5 

Complete trajectory 
A complete trajectory is made of a sequence of transfer 
legs connecting 1Pn   celestial bodies 0 1, ,

PnP P P 
  . 

The trajectory starts from 0P  at time 0t  with a launch 
event characterized by a departure angle 0 . The first leg 
goes from 0P  to 1P , then a number of swing-bys and 
interplanetary legs follow, until the final planet 

PnP . 

Thus, a complete trajectory with 1Pn   planets has Pn  

legs, and 1Pn   swing-bys. 
The solution of Eq. (2) provides a complete scheduling of 
the trajectory given the initial time 0t  and the five 

parameters ,1 ,2 / 1/2, , , ,DSM rev rev p a i
m n n f f    for every leg 

0,..., 1Pi n  . 
Since these five parameters fully characterize all possible 
legs from a planet iP  to a planet 1iP

, they are said to 
define a type of transfer. Conversely, because of the 
multiplicity of the zeros of Eq. (2), each type of transfer 
corresponds to a set of trajectories. 
Hence, assigning a value to 0t , 0 , iP , 

PnP , 

,1 ,2 / 1/2, , , ,DSM rev rev p a i
m n n f f    for  0,..., 1Pi n   creates a 

plan, or solution, which is a tree structure in which every 
branch, from root to leaves, is a trajectory. Each 
trajectory is characterised by a different combination of 

*
0v  and *

pr  for each leg.  
The entire tree is a complete set of trajectories from 0P  to 

PnP  and represents a solution of the MGA trajectory 
planning problem. Thus, a plan is fully defined by 
assigning a value to the parameters in Table 1 for all 

0,..., 1Pi n  . 
An algorithm keeps track of all the trajectories in the tree, 
and yields a list containing all the possible conditions of 
arrival at the last reachable planet. If no trajectory in the 
set associated to leg i satisfies the phasing problem, then 
planet 1i   cannot be reached and the algorithm 
terminates. A partial or incomplete solution is the set of 
parameters sufficient to describe a solution up to leg i. 
Furthermore, if no solution to the phasing problem exists 
at leg i, the plan is broken and the solution is said to be 
infeasible at leg i. Furthermore, an upper bound on the 
time of flight of the entire trajectory, or of some legs, is 
introduced. Trajectories that exceed the total or partial 
time of flight constraint are discarded from the list. The 
information of infeasibility at a given transfer will be 
used to fill in a taboo list of broken or incomplete 
solutions. 
For each of the trajectories found, the model computes: 
the sum of all the deep space manoeuvres, or total v  
and the launch excess velocity, 0v ; the relative velocity 
at the last planet, v ; the total time of flight of the 
trajectory, T. The objective value of the trajectory 

depends on the problem and it is usually a function of 
these values. 
The whole model was implemented in ANSI C and 
compiled as a MEX-file for interfacing with MATLAB. 
 
Table 1: Description of the free design variables defining 

a solution according to the proposed 2D model. 
Description Variables 
Planetary sequence 0 1, ,

PnP P P 
   

Departure time 0t  
Departure angle 0  
Types of transfer 
for 0, , 1Pi n   ,1 ,2 / 1/2, , , ,DSM rev rev p a i

m n n f f    

THE ACO-MGA ALGORITHM 

The model described in the previous section yields a set 
of scheduled trajectories provided that a complete or 
partial plan is available. In this section, we present an 
optimization procedure, based on the ant colony 
optimization paradigm, to explore the space of possible 
plans. 
At first, the continuous space of the real parameters 0t , 

0  and DSM i
m  is reduced to a finite set of states. Then, 

the optimization algorithm, called ACO-MGA in the 
following, operates a search in the finite space of possible 
values for the design parameters. A complete description 
of the algorithm ACO-MGA follows. 

Solution coding 
In ACO-MGA, a solution is coded through a string of 
discrete values assigned to the parameters. However, the 
set of parameters discussed before is inhomogeneous, as 
it is made of real, integer and binary variables. In 
particular, 0t , 0  and DSM i

m  are real continuous 
variables and need to be properly discretised. In the 
present implementation of ACO-MGA, the values of the 
departure date 0t  and the departure angle 0 , are 
assumed to be pre-assigned and therefore the two 
parameters are removed from the list of the variables. 
The rationale behind this choice is that, although the 
launch date has a great impact on the resulting trajectory, 
if an algorithm exists that is able to efficiently generate a 
complete plan for a given launch date, a systematic 
search can be performed along the launch window, with a 
given time step. We will show in the following that a 
systematic search is feasible. The angle 0  on the other 
hand can very often be estimated depending on the 
mission [1]. 
Using the additional assumptions on 0t , 0 , and fixing 

0P , each solution can be coded using a vector s  of 
positive integers. The vector has 2 legsn  components. Each 
pair of consecutive components encodes all the 
parameters necessary to characterise one leg of the 
solution (Fig. 6). The first element of the pair is encoding 
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the identification number of the target planet for the 
corresponding leg according to the following procedure: 
an ordered list ,P iq  containing all the planets available as 
a target for each leg i is predefined (and fixed); then, if 

 2 1 1ik s
 

 , the target planet is the kth entry in the list 

,P iq , i.e. ,( , )P i kq . 
The second element of the pair is the row index of a 
matrix iG  containing all possible combinations of 
indexes identifying the elements of the five sets: 

1, 2, 3, 4, 5,, , , ,i i i i iq q q q q . These sets contain the possible 
values for each one of the five parameters identifying the 
type of transfer at leg i. Thus, each row of iG  is a vector 
representing a different type of transfer. The parameters 
for the jth type of transfer for the ith leg can be obtained as 
follows: 
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where  , , , 1,...,5l i j lk G l  . 
 

 
Fig. 6: Solution vector s for coding a three-leg solution. 

The taboo and feasible lists 
A transfer from planet iP  to planet 1iP  can be feasible or 
unfeasible, for the same set of parameters, depending on 
all the preceding legs from 1 to  1i  . For this reason, 
when an infeasible leg is generated, it is necessary to 
store the path that led to that infeasible leg. Thus, all the 
parameters characterising the partial solution up to 1iP  
are stored in a taboo list. 
In particular, if the problem involves Pn  legs, then the 
same number of taboo lists are used. The taboo list of leg 
i contains all the partial solutions which are unfeasible at 
leg i (but feasible for legs 1 1i  ). Each taboo list is 
stored in a matrix, which has an arbitrary number of rows 
and 2i  columns. 
Dual to the list of taboo partial solutions, the feasible list 
stores all the solutions, which are completely feasible, i.e. 

reach 
PnP . This is once more a matrix with an arbitrary 

number of rows and 2 Pn  columns. 
Since each solution contained in the feasible list is 
complete, then it is possible to associate an objective 
value to each one of them. A scalar value can be 
computed identifying the value of the trajectories. In the 
following test cases, we will use, as objective value, the 
v  and a combination of v  and T. Note that, since, in 
general, there is more than one trajectory for a given 
solution (i.e. for a given set of free design variables), the 
objective value of a solution is given by the best 
trajectory value. 

Search engine 
The search space is organised as an acyclic oriented tree. 
Each branch of the tree represents a leg of the problem, 
while each node (or leave) represents a different 
destination planet and type of transfer. A population of 
virtual ants are dispatched to explore the tree, searching 
for an optimal solution. 
The search runs for a given number of iterations ,iter maxn , 
or until a maximum number of objective function 
evaluations ,eval maxn  has been reached. An evaluation is a 
call to the model, in order to compute the objective value 
associated to a given solution. 
Algorithm 1 illustrates the main iteration loop. Each 
iteration consists of two steps: first, a solution generation 
step, and then a solution evaluation step. In the former 
step, the ants incrementally compose a set of solution 
vectors, while the latter invokes the trajectory model to 
assess the feasibility and the objective value of each 
generated solution. When the main loop of the search 
stops, the feasible list contains all the solutions, which 
were found feasible, with their corresponding objective 
value. The solutions are then sorted according to their 
objective value. 
 
Algorithm 1: Main ACO-MGA search engine. 

1 : While , ,iter iter max eval eval maxn n n n   , Do 
2 :  For each ant 1k m   
3 :   s Generate planetary sequence 
4 :   s Generate types of transfers 
5 :   If s  is not discarded,   S S s  
6 :  End For 
7 :  Evaluate all solutions in S 
8 :   Update feasible list and taboo lists 
9 :  Update ,iter evaln n  

10 : End Do 
11 : Sort feasible list according to y. 

 

Solution generation 
The tree is simultaneously explored, from root to leaves, 
by m ants. At each iteration, each one of the m ants 
explores the tree independently of the others, but taking 
into account the information collected by all the ants at 

Leg 1 Leg 2 

Types of transfer 

Planets 

Leg 3 

Solution vector 

s  
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the previous iterations, through the feasible list and the 
taboo lists. As an ant moves along a branch, it 
progressively composes a complete solution. At first, 
each ant assigns a value to the odd entries of the solution 
vector, i.e. composes the sequence of planetary 
encounters, then it assigns a value to the even entries of 
the solution vector, i.e. the parameters defining the type 
of transfer for each legs. 

Planetary sequence generation 
Each ant composes a solution adding one planet at the 
time. As the departure planet is given, the ant has only to 
choose the destination planet for each leg. The choice is 
made probabilistically by picking from the list ,P iq . The 
selection depends on the discrete probability distribution 
vector ,P id  (one for every leg) which contains the 
probability associated to each body in ,P iq . Every time 
an ant is at leg i, the probability distribution vector is 
reset to  , 1 1 1 T

P i d  , i.e. all the planets have 
equal probability to be chosen, and the ant sweeps the 
entire list ,P iq  substituting the identification number of 
each element in ,P iq  into the ith odd component of the 
partial solution vector s . Then, the feasible list is 
searched, for all the solutions which have a (partial) 
planetary sequence which matches the one in s . Say that 
the jth element of ,P iq  is added to s , and the resulting 
partial sequence in s  matches the partial sequence of the 
lth solution in the feasible lists, then the probability  , ,P i jd  

associated to the jth element of ,P iq  is increased as 
follows: 

    , , , ,
1

planetP i j P i j
l

d d w
y

   (3) 

The amount of probability which is added depends on the 
objective value ly  of the matching solution in the 
feasible list, and on the weight planetw . Thus, the 
probability of choosing the jth planet increases according 
to how many times it generates a promising sequence 
(leading to a feasible solution), to the value of the 
feasible solution itself, and to the parameter planetw . 
This mechanism is analogous to the pheromone 
deposition of standard ACO and aims at driving the 
search of the ants toward planetary sequences, which 
previously led to good solutions. In fact, those planets 
which generate (partial) sequences that appear either 
frequently in the feasible list, or rarely, but with low 
objective function are selected with higher probability. 
On the other hand, the probability of selecting other 
planets remains positive, such that one or more ants can 
probabilistically choose a planet that generates an 
undiscovered sequence. Note that, if the feasible list is 
empty, then all the planets have the same probability to 
be selected. 

The parameter planetw  controls the learning rate of the 
ants. A low value of planetw  will make the term planet lw y  
small, and thus the probability distribution will not 
change much, even if the solution appears repeatedly in 
the feasible list, or with low values of y . Thus, a 
relatively low value of planetw  will favour a global 
exploration of the search space, while a high value of 

planetw  will greatly increase the probability of choosing a 
planet which led to a feasible sequence. If the value of 

planetw  is high enough with respect to a reference 
objective value, then the ant will preferably choose a 
feasible sequence, rather than trying a new one, which 
has not proven to be feasible. For these reasons, we can 
say that low values of planetw  will favour local 
exploration of planetary sequences. 
The procedure iterates for all the legs of the problem, and 
for all the ants. At the end, all the odd entries of the 
temporary solution s  contain a target planet and the 
planetary sequence is complete. The next step is to find 
the type of transfers for each leg, thus filling the even 
entries of s  and complete the solution. 

Type of transfer generation 
Once an ant has filled in the odd components of a 
solution s, it proceeds assigning values to the even 
components. Similarly to the planet sequence generation, 
for each transfer all the available types of transfer are 
assigned, one at the time, to the solution s. A vector s for 
which a value is assigned to both the odd and even 
components up to leg i represents a partial solution. 
Similarly to before, a vector ,t id  contains the probability 
distribution associated to the rows of the matrix iG  (i.e. 
to each type of transfer). 
For each new partial solution, the taboo list is first 
checked. If the partial solution appears in the taboo list, 
then it means that this solution will be infeasible, 
regardless of the way it is completed. The probability of 
the type of transfer associated to that sequence is set to 
zero, to avoid future selection of that type of transfer. If 
the partial solutions does not appear in the taboo list, the 
feasible list is searched for any matching partial solution. 
For every match found, the probability distribution for 
that type of transfer is modified as follows: 

    , , , ,
1

typet i j t i j
l

d d w
y

   (4) 

Where the weight typew  is introduced with analogous 
meaning to planetw . In fact, the higher the coefficient, the 
higher the chances that solutions similar to the feasible 
ones are generated. Conversely, a low value of typew  will 
favour the selection of sequences with a different type of 
transfer, thus increasing the random exploration of the 
whole solution space. 
If, at a given leg i, all possible transfer types correspond 
to partial solutions in the taboo list, the vector of 
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probability distribution ,t id  will be full of zeros. As a 
consequence, the solution s (which can be partial or 
complete) is discarded, and the ant can stop its 
exploration of that branch of the tree. At the end of the 
solution generation step, the solution s is either discarded 
or completed. Once all the ants have completed their 
exploration, the result is a number of solutions (less than 
or equal to the number of ants m) to be evaluated. 

Solution evaluation 
Once a set of solutions S  has been generated by the ants, 
each solution has to be evaluated to assess its feasibility 
and its objective value. This is done by calling the 
trajectory model. 
Solutions in S  are evaluated one by one, by means of the 
model presented before. The trajectory model can be seen 
as a function which takes a solution vector s  as an input, 
together with 0 0 0, ,t P , and gives as an output either an 
objective value y (if the solution is feasible) or the leg ul  
at which the solution becomes unfeasible. If the solution 
is feasible, it is stored in the feasible list and 0ul  , 
otherwise it is stored in the ul

th taboo list. 

CASE STUDIES 

The proposed optimisation method was applied to two 
case studies inspired by the Laplace [11] and Cassini [12] 
missions, the former of which currently under 
preliminary study by ESA, NASA and JAXA. 
ACO-MGA was tested against genetic algorithms, which 
are known to perform well on these kinds of problems. In 
particular, it was chosen to use the genetic algorithm 
implemented in MATLAB® within the Genetic 
Algorithm and Direct Search Toolbox™ (GATBX), and 
the Non-dominated Sorting Genetic Algorithm (NSGA-
II) [13]. Settings for all the optimisers will be specified 
for each test case. While NSGA-II can deal with discrete 
variables, GATBX only uses real variables: a wrapper of 
the objective function was coded to round the continuous 
solution vector to the closest integer. 
Due to the stochastic nature of the methods involved in 
the comparative tests, all the algorithms were run for 100 
times. The performance index used to compare the ACO-
MGA against the other global optimisers is the success 
rate: according to the theory developed in [14], 100 
repetitions give an error in the determination for the exact 
success rate of less than 6%. 
Some preliminary tests showed that the best 
performances of ACO-MGA are achieved if the 
algorithm is run in 2 steps, using different sets of 
parameters. In particular, in the first step, the weights 

,planet typew w  are set to 0: remembering Eq. (3) this choice 
translates into an initial pure random search. In the 
second step, weights are set to non-null values, to explore 
around the feasible solutions found. 
The values of ,planet typew w  are set such that: 

 ,planet typew w w y    (5) 
where y  is the expected minimum value for the 
objective function. In this way, choosing for example 

1w  , a 1 is added to the probability of a given element 
every time a matching solution with objective y  appears 
in the feasible list. The value of probability is higher if 
the objective value of the matching feasible solution is 
lower. 
This two-step procedure can be explained in the 
following way. The first step allows a random sampling 
of the solution space, with the aim of finding a good 
number of feasible solutions. This is done to prevent the 
algorithm to stagnate around the first feasible solution 
found. The second step intensifies the search around the 
feasible solutions which were found at step one. Because 
of Eqs. (3) and (4), feasible solutions with low objective 
value are likely to be investigated further. In addition, the 
random component in the process does not forbid to keep 
exploring the rest of the search space. 
The test cases were run on an Intel® Pentium® 4 3 GHz 
machine running Microsoft® Windows® XP. 

Laplace case study 
In this mission, the spacecraft reaches the sphere of 
influence of Jupiter after an interplanetary flight, and 
exploits a swing-by of Ganymede to get captured into the 
Jovian system. At this point, multiple swing-bys of 
Ganymede and Callisto are used to reduce the relative 
velocity to Callisto v , in order to be captured by the 
Moon and start the scientific phase. 
The problem under consideration relates to the second 
part of the transfer: we assume that the interplanetary 
trajectory has been already optimised, including the first 
Ganymede gravity assist. The resulting orbit is a 3:1 
resonance (spacecraft:planet) with Ganymede. The 
problem is to find the sequence of additional swing-bys, 
starting from the second one of Ganymede, to reach 
Callisto with low v . 
For tackling this problem with ACO-MGA, a launch is 
simulated from Ganymede, and the initial conditions and 
type of transfer for the first leg (GG) are fixed. The other 
legs, instead, have free parameters to be optimised. 
The date of the first Ganymede swing-by is 

0 9309.8 d, MJD2000t  , corresponding to 28th June 
2025, where the spacecraft leaves the planet with an 
angle 0 1.2471  rad. For defining the first leg according 
to the design, the following set of parameters is 
considered: 
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in which every relevant set contains only one element as 
the leg must be fixed to match the previous part of the 
trajectory. Since there is no DSM, the parameters 
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,1 2,11revn q  and / 4,11p af q  are not influent. These 

settings lead to a departure velocity from Ganymede of 
0 5.1 km/sv  , as required. 

Three free legs are added to problem. For the first two, 
the algorithm can choose to target Ganymede or Callisto, 
while for the third and last, the target must be Callisto: 
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Small corrective DSM manoeuvres of 10 m/s  can be 
used, and up to 3 complete revolutions can be performed. 
The number of revolutions is entirely controlled by the 
parameter ,2 3,rev ii

n q . In general, there is no easy way 
to identify whether the first or the second orbital 
intersection is the best one, so the binary parameter 1/2 i

f  
was left free to be chosen by the ants. 
The radius of pericentre of the swing-bys is bounded 
between 1 and 3 radii PR  of the body. 
The total time of flight was limited to a maximum of 100 
days and the objective function for a complete solution is 
the v  at the final encounter with Callisto. 
The average time for evaluating one solution (finding all 
the trajectories that generates) of this test case is 30.34 
ms, and there are 9216 distinct solutions. Thus, a 
systematic approach, scanning all the solutions, would 
require 4.66 min. 
All the optimisers were run for up to 600 function 
evaluations. GATBX and NSGA-II were run with the 
settings shown in Table 2. In addition, the initial 
population of GATBX is spread in the whole domain. 
Since the size of the population is very important for 
genetic-based algorithms, and it can affect the results 
significantly, this case study was also run 100 times with 
different sizes of the population (maintaining the 
predefined number of total function evaluations by 
varying the number of generations accordingly). For 
NSGA-II, it resulted that there was no noticeable change 
in the quality of the results over 100 runs. This is related 
to the fact that NSGA-II is not completely converging 
with only 600 function evaluations. 
For GATBX, instead, results were changing significantly, 
and the settings leading to the best solutions were used. 
The parameters for ACO-MGA were tuned by trial and 
error, running the same test case for different values of 
the weights, the number of ants and the number of 
iterations. The best results were obtained with the 
following settings. 10 ants were used, with a first 
optimisation step with 30 iterations and , 0planet typew w  , 

followed by a second step of 30 more iterations with 
, 20 3 km/splanet typew w   . Because of the normalisation 

shown in Eq. (5), the weight values appear to have 
general validity, and can be applied also to other transfer 
problems, as will be shown in the next case study. 
Results in the form of statistical parameters over the 100 
runs are presented in Table 3. All the algorithms found at 
least one feasible solution in every run. The value of 2 
km/s as a target value for the v  has been chosen to 
compute the success rate according to the procedure 
proposed in [15]. 
The results in Table 3 point out that, while all the 
algorithms find feasible solutions in all the runs, the 
quality of the solution is much better for ACO-MGA. 
Moreover, GATBX found a good solution only in 31% of 
the runs, and NSGA-II in 39%. ACO-MGA, instead, 
found a good solution in 62% of the runs. 
The time for one ACO-MGA run is about 8 min. The 
simplicity of the test case, together with the 
implementation of ACO-MGA in a high-level language 
like MATLAB, makes the use of an optimisation method 
slower than the systematic scan of the whole solution 
space. Note that this will not happen in the more complex 
Cassini test case. 
 
Table 2: Parameters of GATBX and NSGA-II for the 

Laplace test case. 
GATBX  NSGA-II 

Parameter Value  Parameter Value 
Generations 20  ngen 22 
PopulationSize 30  popsize 28 
StallGenLimit +Inf  pcross_bin  0.5 
   pmut_bin 0.5 

 
Table 3: Comparison of the performances of ACO-MGA, 

GATBX, NSGA-II over 100 runs for the Laplace 
problem. 

 Average best 
value, km/s 

% runs 
< 2 km/s 

% feasible 
runs 

ACO-MGA 2.0141 62% 100% 
GATBX 2.34 31% 100% 
NSGA-II 2.1074 39% 100% 

 
The reference solution for this problem, as chosen by 
ESA during a preliminary study, was re-optimised using 
a full 3D model with 1 free deep space manoeuvre per 
leg [16], and minimising the v : the resulting trajectory 
is represented in Fig. 7 (a), starting from the second 
swing-by of Ganymede. The sequence for this solution is 
GGCGC, and the objective value, i.e. the final relative 
velocity, is 1.96 km/sv  . The solution is practically 
ballistic. 
The same solution was found by ACO-MGA, with an 
objective value of 1.91 km/sv  , and its projection is 
represented in Fig. 7 (b). The similarity of the two 
solutions, despite the assumptions made in the 2D model, 
is clear. Table 4 compares some parameters of the 2D 
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solution with the re-optimised 3D solution. The similarity 
of the time of flights of each leg remarks that the two 
solutions are the same. Slight differences are due to the 
different models, and mainly to the changes of inclination 
that are needed in the 3D solution. 
Note that the solution chosen by ESA, and used here as a 
comparison, is not the best from the point of view of the 
arrival velocity. In fact, this solution was chosen by ESA 
following a trade off, taking into account not only the v , 
but also the presence of DSMs, the total time of flight, 
the radiation dose, and the arrival velocity vector at 
Callisto. 
Solutions with lower v  exist, and in fact were found by 
ACO-MGA. The best solution found has 1.71 km/sv  , 
and corresponds to the trajectory plotted in Fig. 8. The 
swing-by sequence is the same, GGCGC, but the total 
time of flight is much longer (92 days), since one leg 
performs 1 full revolution and another one 2 full 
revolutions. Also, a DSM of 10 m/s is used. 
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Fig. 8: Best solution found by ACO-MGA, sequence 

GGCGC. The first leg is not plotted. 
 
Table 4: Characteristics of the ACO-MGA solution and 

the optimised 3D solution. The first leg is not 
considered. 

Variable ACO-MGA 3D optim. 
2v , m/s 0 0 

3v , m/s 0 0 

4v , m/s 0 0 

2T , d 17.4 17.52 

2T , d 13.9 13.84 

3T , d 5 5.10 
v , km/s 1.91 1.96 

 
 

Cassini case study 
Cassini is the ESA-NASA mission to Saturn. The 
planetary sequence designed for the mission, EVVEJS is 
particularly long, allowing a substantial saving of 
propellant. 
Since the launch date is not taken into account in the 
optimisation, in the following test it is considered fixed. 
In a real mission design case, where the launch date is to 
be determined, the entire launch window can be 
discretised with a given time step, and a systematic scan 
of several dates within the whole launch window should 
be run. The launch direction 0  is also kept fixed in 
these tests, although it is easy to find heuristics for 
determining the value of this parameter, or discretise it 
and include it in the optimisation process as an additional 
variable. 
For testing the ACO-MGA we will make use of a 5-leg 
trajectory, with starting date 0 779 d, MJD2000t   , 
corresponding to 13 November 1997. The following sets 
of parameters were used, to allow DSMs in the first 3 
legs only: 

a) 
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Fig. 7: (a) Reference solution (sequence GGCGC) 

optimised with a full 3D model. (b) Same solution as 
found by ACO-MGA. The first leg is not plotted. 
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The planets available for swing-bys are 
 , Venus, Earth, Jupiter , 1,..,4P i i q , while the target 

planet is obviously fixed to Saturn. The number of 
maximum full revolutions is fixed to 0, as it can be seen 
from the choice of parameters ,1revn  and ,2revn . This is 
done to limit the total time of flight of the mission. Since 
the trajectory is going outwards of the orbit of the Earth, 
every full revolution implies more than one additional 
year in the transfer time. The main aim of this case study, 
then, is to assess the ability of finding promising 
planetary sequences, using deep space manoeuvres. The 
total number of distinct solutions for this test is 
7,112,448, and the average time to evaluate a solution is 
1.26 ms. This translates in 8961.7 s (or about 2.5 hours) 
to systematically evaluate all the solutions. 
The launch excess velocity module was bounded between 
2 and 4 km/s. For the swing-bys of Earth and Venus, the 
radii of pericentre span from 1.1 to 5 PR . A different 
choice is adopted for Jupiter. In fact, the mass of this 
planet is considerably bigger than the masses of Venus 
and Earth, so higher radii of pericentre are enough to 
achieve considerable deviations. It was decided to 
consider the range 5 to 100 PR . 
Regarding the choice of the objective function, it has to 
be noted that for all the missions to outer planets, the 
time of flight becomes very important, as very long 
missions are needed to reach farther destinations. Even 
limiting the number of complete revolutions to zero, is 
not enough to guarantee a mission with reasonable 
duration. Therefore, it is important to include the total 
time of flight T in the objective function, in addition to 
the total v . Since the current algorithm cannot deal 
with multi-objective optimisation, the total time of flight 
and the v  are weighed inside the objective function, 
such that y v T  : for this test case the weight on T 
was chosen to be 1 1000 km/s/d  . 
The total time of flight has been limited to a maximum of 
100 years: limiting the time of flight to lower values 
would over-constrain the search for optimal solutions. 
Instead, better results are obtained by allowing long 

solutions to be returned as feasible, and introducing their 
duration into the objective function. 
The three optimisers were run at first for 4000 and then 
for 6000 function evaluations. The weights of ACO-
MGA were set to , 0planet typew w   for the first step, and 

, 20 7 km/splanet typew w    for the second step. With these 
settings, a run of ACO-MGA takes 161 s for 4000 
evaluations and 273 s for 6000 evaluations. This is 
considerably faster than the exhaustive scan of the 
solution space. 
The parameters used for GATBX and NSGA-II are 
reported in Table 5. The comparative results for the two 
sets of runs are shown in Table 7. It can be seen that, for 
4000 evaluations, ACO-MGA found feasible solutions in 
91% of the runs, compared to 25% of GATBX and 26% 
of NSGA-II. The average ACO-MGA solution is also 
slightly better than GATBX, and considerably better than 
NSGA-II. The performances of ACO-MGA increase 
significantly by using 6000 evaluations: all the runs 
produce a feasible solution, and in 80% of the cases, the 
best solution found is below 16 km/s. The average value 
of the solution also decreases to 15.434 km/s. It is 
interesting to note that, for GATBX, the average best 
solution found with 6000 evaluations is higher than for 
4000: this is partly balanced by the fact that it finds 
feasible solutions in 28% of the runs. Another thing 
worth noticing is that NSGA-II finds more often feasible 
solutions than GATBX, but their quality is in average 
worse. 
The best solution found through ACO-MGA (sequence 
EVVEJS) has an objective value of 6.9686 km/s: The 
characteristics of this solution can be found in Table 6, 
compared to the best solution found for the Earth-Saturn 
transfer problem (see http://www.esa.int/gsp/ACT/inf/op/
globopt/edvdvdedjds.htm) found with MIDACO and 
reproduced with the model in [3]. The trajectory of the 
ACO-MGA solution is shown in Fig. 9 (a), while the 3D 
reference solution is in Fig. 9 (b). 
 
 
Table 5. Parameters of GATBX and NSGA-II for the 

Cassini test case. 
GATBX  NSGA-II 

Parameter Value  Parameter Value 
Common parameters 

StallGenLimit +Inf  pcross_bin  0.5 
   pmut_bin 0.5 

4000 function evaluations 
Generations 20  ngen 200 
PopulationSize 200  popsize 20 

6000 function evaluations 
Generations 30  ngen 300 
PopulationSize 200  popsize 20 
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It is interesting to sort the feasible sequences found by 
ACO-MGA according to the best objective value that 
they can achieve. The bar graph in Fig. 10 shows the 
outcome: note that every sequence has a trajectory 
associated to it, modelled as shown before, and thus 
taking into account the phasing problem. This means that 
these solutions could be re-optimised with a more 
detailed model (in particular including the third 
dimension), leading to actual transfer solutions. This 
means that ACO-MGA is a powerful tool to find feasible 
sequences and corresponding first-guess solutions. 

Launch date analysis 
As mentioned before, the algorithm, at the current state, 
does not perform any kind of search on the launch date 

0t . In fact, this variable is not even included in the 
solution vector s. Rather, if the launch date is not fixed, 
but a launch window is available, a systematic scan can 
be performed to find the best launch date, and the 
corresponding solutions. This procedure is not always 
applicable: in fact, if re-running the algorithm for a small 

Table 7. Comparison of the performances of ACO-MGA, 
GATBX, NSGA-II over 100 runs for the Cassini 
problem. 

Optimiser Average best 
value, km/s 

% runs 
< 16 km/s 

% feasible 
runs 

4000 function evaluations 
ACO-MGA 16.24 44% 91% 

GATBX 16.349 14% 25% 
NSGA-II 20.426 5% 26% 

6000 function evaluations 
ACO-MGA 15.434 80% 100% 

GATBX 16.526 17% 28% 
NSGA-II 20.122 7% 37% 

 

Table 6. Characteristics of the ACO-MGA solution and 
the reference solutions. 
Variable ACO-MGA Reference 

0v , km/s 3.14 3.259 

1v , m/s 600 480 

2v , m/s 350 398 

3v , 4v , 5v , m/s 0 0 
v , km/s 4.21 4.246 

1T , d 168 167 

2T , d 423 424 

3T , d 53 53 

4T , d 596 589 

5T , d 2290 2200 
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Fig. 9: (a) ACO-MGA solution; (b) Cassini reference solution. 
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Fig. 10: Best objective values found for each sequence. 

All the other sequences are either unfeasible or with 
a very high objective. 
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change in the launch date, the solutions that ACO-MGA 
finds are substantially different, then the systematic scan 
along 0t  is not feasible, and this variable must be taken 
into account in the optimization process. If, on the other 
hand, a small displacement along 0t  causes a small 
change in the best solution found (e.g. same planetary 
sequence, possibly different types of transfers, similar 
objective value), then the systematic scan is a tool for 
identifying the promising launch possibilities. 
A test for verifying this assertion was run using the 
BepiColombo [15] transfer problem. BepiColombo is a 
multiple gravity assist mission to Mercury, currently 
under study at ESA and JAXA. In Ref. [15] an optimal 
transfer solution is provided, using two swing-by of 
Venus to reach Mercury (sequence EVVMe). The 
optimal launch date is found on 15 August 2013, i.e.  

0 4974.5 d, MJD2000t  . 
ACO-MGA was run on this transfer problem, leaving the 
choice of the two swing-bys among Mercury, Venus and 
Earth, and leaving free other transfer parameters, like the 
number of revolutions. The objective is to minimise the 
relative velocity v  at Mercury. 
Five different launch dates, in a window of 10 days 
around the one chosen by ESA, were considered, and for 
each one of them, 100 runs were used. The corresponding 
best solution values are found in Table 8. The result is 
that the best solution is found about 1 day before 0t

 , 
while earlier or later launches become less convenient. In 
addition, all the solutions around the ideal launch date 
have the same planetary sequence of swing-bys. 
The discrepancy between the value of v  found by ACO-
MGA and the one in [15] has two causes: the first is that 
ACO-MGA does not take into account the inclination of 
the planets, and the orbit of Mercury is highly inclined. 
The second is that the ESA solution was found as a part 
of a longer trajectory, and thus with a different objective. 
The same reasons explain why, according to ACO-MGA, 
the ideal launch date is 1 day earlier. As a matter of fact, 
this is not a problem, and a subsequent local optimisation 
of the ACO-MGA solutions with a full model would tune 
the launch date. 
Thus, we can conclude that the systematic search can be 
exploited to find optimal launch dates. 
 
Table 8: Best solutions to Mercury found by ACO-MGA 

for different launch dates. 

Launch date 0t  Optimal 
sequence y v , km/s 

0 5 dt   EVVMe 5.98 

0 1 dt   EVVMe 5.84 

0t
  EVVMe 6.10 

0 1 dt   EVVMe 6.62 

0 5 dt   EVVMe 6.72 

CONCLUSION 

The paper introduced a novel formulation of the 
automatic complete trajectory planning problem and 
proposed a new algorithm (ACO-MGA), based on the ant 
colony paradigm, to generate optimal solutions to this 
problem. Each solution is a complete, unscheduled plan. 
Each plan is then processed through a specific model that 
efficiently generates families of scheduled trajectories for 
multi-gravity assist transfers. The 2D trajectory model 
proved to be accurate enough to closely reproduce known 
MGA transfers even with moderate inclinations. 
Furthermore, the scheduling of the trajectories is fast and 
reliable allowing for the evaluations of thousands of 
plans in a short time. 
ACO-MGA operates an effective search in the finite 
space of possible plans. The algorithm demonstrated a 
remarkable ability to find good solutions with a very high 
success rate, outperforming known implementations of 
genetic algorithms. As ACO-MGA requires very little 
information on the MGA problem under investigation, it 
represents a valuable tool for the complete automatic 
design of future space missions. Future work aims at a 
more efficient handling of the lists, which is currently the 
major bottleneck of the ACO-MGA implementation. 
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