Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Natural fibre cross sectional area effects on the determination of fibre mechanical properties

Thomason, James and Gentles, Fiona and Brennan, A. (2012) Natural fibre cross sectional area effects on the determination of fibre mechanical properties. In: 15th European Conference on Composite Materials, 2012-06-24 - 2012-06-28.

[img] Microsoft Word
Thomason_JL_Pure_Natural_fibre_cross_sectional_area_effects_on_the_determination_of_fibre_mechanical_properties_Jun_2012.docx - Preprint

Download (640kB)

Abstract

The cross section values obtained from fibre “diameter” measurements on a range of natural fibres were much greater than those obtained from actual observation of cross sections of the same individual fibres. This overestimation was found to be as much as 400% in some extreme cases. The overall conclusion is that fibre “diameter” measurement is not an attractive method for accurate estimation of cross sectional area of these natural fibres. This conclusion is significant for researchers engaged in micromechanical investigation of natural fibre composites since differences in fibre cross section translate directly into differences of the same magnitude in the values obtained for the fibre modulus and strength. The error in fibre cross section introduced by the “diameter” method scales with the average fibre “diameter” which may also result in erroneous observations of fibre modulus and strength scaling inversely with natural fibre “diameter”. A simple mathematical model based on an elliptical fibre cross section is shown to explain the observed trends and the magnitude of the fibre cross section area overestimation from the “diameter” method is shown to scale with the average eccentricity of the observed natural fibre cross sections.