Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Natural fibre cross sectional area, its variability and effects on the determination of fibre properties

Thomason, James and Carruthers, John (2012) Natural fibre cross sectional area, its variability and effects on the determination of fibre properties. Journal of Biobased Materials and Bioenergy, 6 (4). pp. 424-439. ISSN 1556-6560

[img] Microsoft Word
Thomason_JL_Pure_Natural_fibre_cross_sectional_area_its_variability_and_effects_on_the_determination_of_fibre_properties_20_July_2012.doc - Preprint

Download (1MB)

Abstract

The results of a study on the measurement of fibre bundle cross section and its variability in flax and sisal fibres are presented. Cross section values obtained from “diameter” measurements were more than double the values obtained from actual observation of cross sections of the same individual fibre bundles. The overall conclusion is that “diameter” measurement is not an attractive method for accurate estimation of cross sectional area of these natural fibre bundles. This conclusion is significant for researchers engaged in micromechanical investigation of natural fibre composites since differences in fibre cross section translate directly into differences of the same magnitude in the values obtained for the fibre modulus and strength. The error in fibre bundle cross section introduced by the “diameter” method scales with the average fibre bundle “diameter” which may also result in erroneous observations of fibre modulus and strength which scale inversely with natural fibre bundle “diameter”. The difference in average cross section observed from fibre bundle to fibre bundle was significantly greater than the variation along the length of each individual fibre bundle. The minimum to maximum cross section variability of individual flax fibre bundles was found to be approximately twice that observed for sisal fibre bundles. A simple model based on a non-circular fibre bundle cross section is introduced and shown to explain these observations.