Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Incorporation of TiC on Alsi 4340 low alloy steel surfaces via tungsten inert gas arc melting

Mridha, Shahjahan and Idriss, A.N. and Baker, Thomas (2012) Incorporation of TiC on Alsi 4340 low alloy steel surfaces via tungsten inert gas arc melting. Advanced Materials Research, 445. pp. 655-660. ISSN 1022-6680

[img] PDF
Baker_TN_Pure_Incorporation_of_TiC_particles_on_AlSi_4340_low_alloy_steel_surfaces..._arc_melting_13_Jul_2011.pdf - Preprint

Download (6MB)

Abstract

Surface cladding utilizes a high energy input to deposit a layer on substrate surfaces providing protection against wear and corrosion. In this work, TiC particulates were incorporated by melting single tracks in powder preplaced onto AISI 4340 low alloy steel surfaces using a Tungsten Inert Gas (TIG) torch with a range of processing conditions. The effects of energy input and powder content on the melt geometry, microstructure and hardness were investigated. The highest energy input (1680 J/mm) under the TIG torch produced deeper (1.0 mm) and wider melt pools, associated with increased dilution, compared to that processed at the lowest energy (1008J/mm). The melt microstructure contained partially melted TiC particulates associated with dendritic, cubic and globular type carbides precipitated upon solidification of TiC dissolved in the melt; TiC accumulated more near to the melt-matrix interface and at the track edges. Addition of 0.4, 0.5 and 1.0 mg/mm2 TiC gave hardness values in the resolidified melt pools between 750 to over 1100Hv, against a base hardness of 300 Hv; hardness values are higher in tracks processed with a greater TiC addition and reduced energy input.