Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Excitation power and temperature dependence of excitons in CuInSe2

Luckert, F. and Yakushev, M. V. and Faugeras, C. and Karotki, A. V. and Mudryi, A. V. and Martin, R. W. (2012) Excitation power and temperature dependence of excitons in CuInSe2. Journal of Applied Physics, 111 (9). ISSN 0021-8979

[img]
Preview
PDF
JAP_111_093507_Luckert.pdf - Final Published Version
License: Unspecified

Download (1MB) | Preview

Abstract

Excitonic recombination processes in high quality CuInSe2 single crystals have been studied by photoluminescence (PL) and reflectance spectroscopy as a function of excitation powers and temperature. Excitation power dependent measurements confirm the identification of well-resolved A and B free excitons in the PL spectra and analysis of the temperature quenching of these lines provides values for activation energies. These are found to vary from sample to sample, with values of 12.5 and 18.4meV for the A and B excitons, respectively, in the one showing the highest quality spectra. Analysis of the temperature and power dependent PL spectra from the bound excitonic lines, labelled M1, M2, and M3 appearing in multiplets points to a likely assignment of the hole involved in each case. The M1 excitons appear to involve a conduction band electron and a hole from the B valence band hole. In contrast, an A valence band hole appears to be involved for the M2 and M3 excitons. In addition, the M1 exciton multiplet seems to be due to the radiative recombination of excitons bound to shallow hydrogenic defects, whereas the excitons involved in M2 and M3 are bound to more complex defects. In contrast to the M1 exciton multiplet, the excitonic lines of M2 and M3 saturate at high excitation powers suggesting that the concentration of the defects involved is low. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4709448]