Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Zinc-blende and wurtzite AlxGa1-xN bulk crystals grown by molecular beam epitaxy

Novikov, S. V. and Staddon, C. R. and Luckert, F. and Edwards, P. R. and Martin, R. W. and Kent, A. J. and Foxon, C. T. (2012) Zinc-blende and wurtzite AlxGa1-xN bulk crystals grown by molecular beam epitaxy. Journal of Crystal Growth, 350 (1). pp. 80-84. ISSN 0022-0248

[img]
Preview
PDF
JCG_350_80_Novikov_Zb_W_AlGaN.pdf - Final Published Version
License: Unspecified

Download (270kB) | Preview

Abstract

There is a significant difference in the lattice parameters of GaN and AlN and for many device applications AlxGa1-xN substrates would be preferable to either GaN or AlN. We have studied the growth of free-standing zinc-blende and wurtzite AlxGa1-xN bulk crystals by plasma-assisted molecular beam epitaxy (PA-MBE). Thick (similar to 10 mu m) zinc-blende and wurtzite AlxGa1-xN films were grown by PA-MBE on 2-in. GaAs (0 0 1) and GaAs (1 1 1)B substrates respectively and were removed from the GaAs substrate after the growth. We demonstrate that free-standing zinc-blende and wurtzite AlxGa1-xN wafers can be achieved by PA-MBE for a wide range of Al compositions. (C) 2011 Elsevier B.V. All rights reserved.