Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Controlling fast-electron-beam divergence using two laser pulses

Scott, R. H. H. and Beaucourt, C. and Schlenvoigt, H. -P. and Markey, K. and Lancaster, K. L. and Ridgers, C. P. and Brenner, C. M. and Pasley, J. and Gray, R. J. and Musgrave, I. O. and Robinson, A. P. L. and Li, K. and Notley, M. M. and Davies, J. R. and Baton, S. D. and Santos, J. J. and Feugeas, J. -L. and Nicolai, Ph. and Malka, G. and Tikhonchuk, V. T. and McKenna, P. and Neely, D. and Rose, S. J. and Norreys, P. A. (2012) Controlling fast-electron-beam divergence using two laser pulses. Physical Review Letters, 109 (1). ISSN 0031-9007

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

This Letter describes the first experimental demonstration of the guiding of a relativistic electron beam in a solid target using two colinear, relativistically intense, picosecond laser pulses. The first pulse creates a magnetic field that guides the higher-current, fast-electron beam generated by the second pulse. The effects of intensity ratio, delay, total energy, and intrinsic prepulse are examined. Thermal and K alpha imaging show reduced emission size, increased peak emission, and increased total emission at delays of 4-6 ps, an intensity ratio of 10:1 (second: first) and a total energy of 186 J. In comparison to a single, high-contrast shot, the inferred fast-electron divergence is reduced by 2.7 times, while the fast-electron current density is increased by a factor of 1.8. The enhancements are reproduced with modeling and are shown to be due to the self-generation of magnetic fields. Such a scheme could be of considerable benefit to fast-ignition inertial fusion.