Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

The ALPHA-X beam line : toward a compact FEL

Anania, Maria Pia and Clark, David and Issac, Riju and Jaroszynski, Dino and Reitsma, Albert and Welsh, Gregor H. and Wiggins, Mark and Schramm, Ulrich and de Loos, M. J. and van der Geer, S.B. and Clarke, J.A. and Poole, M.W. and Shepherd, B. J. A. (2009) The ALPHA-X beam line : toward a compact FEL. In: 31st International Free Electron Laser Conference, 2011-03-31.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Recent progress in developing laser-plasma accelerators is raising the possibility of a compact coherent radiation source that could be housed in a medium-sized university department. Beam properties from laser-plasma accelerators have been traditionally considered as not being of sufficient quality to produce amplification. Our work shows that this is not the case. Here we present a study of the beam characteristics of a laser-plasma accelerator. We also highlight the latest results on the ALPHA-X compact FEL. We show how the beam properties of the ALPHA-X beam line have been optimized in order to drive a FEL. We discuss the implementation of a focussing system consisting of a triplet of permanent magnet quadrupoles and a triplet of electromagnetic quadrupoles. The design of these devices has been carried out using the GPT (General Particle Tracer*) code, which considers space charge effects and allows a realistic estimate of electron beam properties along the beam line. The latest measurements of energy spread and emittance will be presented. Currently we have measured energy spreads less than 0.7% and, using a pepper pot, put an upper limit on the emittance of 5 pi mm mrad.