Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Sub-micrometer patterning of amorphous- and β-phase in a crosslinkable poly(9,9-dioctylfluorene) : dual-wavelength lasing from a mixed-morphology device

Kuehne, A. J. C. and Kaiser, M. and Mackintosh, A. R. and Wallikewitz, B. H. and Hertel, D. and Pethrick, R. A. and Meerholz, K. (2011) Sub-micrometer patterning of amorphous- and β-phase in a crosslinkable poly(9,9-dioctylfluorene) : dual-wavelength lasing from a mixed-morphology device. Advanced Functional Materials, 21 (13). pp. 2564-2570. ISSN 1616-301X

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The metastable β-phase morphology, inherent to most polyfluorene homo-polymers, is of interest due to its superior optical and electrical characteristics compared to its amorphous analogue. Here, a polyfluorene with vinyl-ether-functionalized aliphatic side-chains that allow crosslinking is reported. It is demonstrated that the previously induced conformational morphology is preserved in the resulting polyfluorene network, which enables subsequent wet thin-film processing. Electron-beam lithography provides a means for sub-(optical)-wavelength patterning of the crosslinkable polyfluorene films. As a specific demonstration, optically-pumped distributed-feedback (DFB) lasers made from surface-relief gratings in amorphous and β-phase polyfluorene are presented. By backfilling gratings of one morphology by the other, devices are demonstrated that exhibit lasing at two wavelengths with a threshold (<1 μJ cm−2) at least an order of magnitude lower compared with previous data.