Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

An experimental study of interceptors for drag reduction on high-performance sailing yachts

Day, Alexander H. and Cooper, Christopher (2011) An experimental study of interceptors for drag reduction on high-performance sailing yachts. Ocean Engineering, 38 (8-9). pp. 983-994. ISSN 0029-8018

[img] PDF (An Experimental Study of Interceptors final Ocean Engineering) - Draft Version
Download (592Kb)

    Abstract

    Interceptors have been widely used in recent years in fast ferries and small high-speed leisure and commercial craft for ride and trim control, and steering. In the context of high-performance sailing yachts, they first appeared in 2008 on the yacht Ecover 3 which was dismasted while leading the Vendee Globe Challenge race. However, in spite of their popularity in power craft, few studies have been published investigating the impact of interceptors on vessel performance, and apparently none in the case of sailing yachts. In the current study, interceptors are compared with an aerodynamic device known as a Gurney flap. It is shown that interceptors are generally substantially smaller than Gurney flaps. A comprehensive experiment programme is presented exploring the impact of interceptors on the performance of an Open 60 yacht hull. Results show a marked reduction in calm-water resistance over a wide speed range, with benefits of 10–18% in the speed range between 8 and 20 knots, accompanied by reduced sinkage and trim. The gains observed are much larger than those observed in powercraft, and also substantially greater than those achievable through trim changes by moving ballast longitudinally. The benefits appear to be largely sustained in small waves.

    Item type: Article
    ID code: 40809
    Keywords: model testing, hydrodynamics, yachts, ship resistance, aerodynamics, drag reduction, appendages, Hydraulic engineering. Ocean engineering, Engineering (miscellaneous)
    Subjects: Technology > Hydraulic engineering. Ocean engineering
    Department: Faculty of Engineering > Naval Architecture and Marine Engineering
    Related URLs:
    Depositing user: Pure Administrator
    Date Deposited: 08 Aug 2012 16:17
    Last modified: 27 Mar 2014 20:17
    URI: http://strathprints.strath.ac.uk/id/eprint/40809

    Actions (login required)

    View Item

    Fulltext Downloads: