Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Note: femtosecond laser micromachining of straight and linearly tapered capillary discharge waveguides

Wiggins, Mark and Reijnders, Merijn and Abu-Azoum, Salima Saleh and Hart, Kerri and Welsh, Gregor H. and Issac, Riju and Jones, David and Jaroszynski, Dino (2011) Note: femtosecond laser micromachining of straight and linearly tapered capillary discharge waveguides. Review of Scientific Instruments, 82 (9). ISSN 0034-6748

[img]
Preview
PDF (Wiggins-rsi11)
wiggins_rsi11.pdf - Published Version
Available under License Unspecified.

Download (286kB) | Preview

Abstract

Gas-filled capillary discharge waveguides are important structures in laser-plasma interaction applications, such as the laser wakefield accelerator. We present the methodology for applying femtosecond laser micromachining in the production of capillary channels (typically 200–300 μm in diameter and 30–40 mm in length), including the formalism for capillaries with a linearly tapered diameter. The latter is demonstrated to possess a smooth variation in diameter along the length of the capillary (tunable with the micromachining trajectories). This would lead to a longitudinal plasma density gradient in the waveguide that may dramatically improve the laser-plasma interaction efficiency in applications.