Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Development and validation of a probe allowing accurate and continuous monitoring of location of squamo-columnar junction

Lee, Yeong Yeh and Seenan, John P. and Whiting, James G. H. and Robertson, Elaine V. and Derakhshan, Mohammad H. and Wirz, Angela A. and Smith, Donald and Hardy, Chris and Kelman, Andrew and Connolly, Patricia and McColl, Kenneth E. L. (2012) Development and validation of a probe allowing accurate and continuous monitoring of location of squamo-columnar junction. Medical Physics, 34 (3). pp. 279-289. ISSN 0094-2405

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Most pathology of the upper gastro-intestinal tract now occurs close to the gastrooesophageal squamo-columnar junction (SCJ). Studying the pathophysiology of this region even using high resolution pH, impedance and manometry is unreliable due to constant movement with respiration, swallowing and transient lower oesophageal sphincter relaxations. A technique is reported allowing continuous real-time monitoring of the position of the SCJ. It involves endoscopically clipping a magnet (2 mm x 1 mm) to the SCJ and monitoring its position relative to a probe in the oesophago-gastric lumen. The latter has 26 Hall-Effect sensors mounted at 5 mm spacing on a circuit board within a silicone tube. Bench studies: The recorded position of the magnet along the length of the probe was compared with its actual position. Accuracy was related to the distance between magnet and probe, orientation of the magnet relative to the probe and whether the magnet was anterior, posterior or lateral to the probe. Including all possible orientations of the magnet at or nearer than 10 mm from the probe, the median accuracy along the length of probe was 2.4 mm (IQR 2.1 mm). The proportion of all possible orientations within 10 mm of the probe giving an accuracy of +/- 10 mm was 88.9%. In vivo studies: With simultaneous fluoroscopy, eight healthy subjects were asked to perform normal breathing, deep breathing, water swallows and finally advancement and retraction of probe over a 12cm segment. The position recorded by fluoroscopy and probe at each second interval were compared. The correlation co-efficient for all 224 position readings was 0.96 (95% CI: 0.89-0.96). No significant interference was observed when the probe was tested alongside high resolution pH and manometry. Used in conjunction with high resolution pH, impedance and manometry, this technique will allow for the first time detailed studies at the squamo-columnar junction. (C) 2011 IPEM. Published by Elsevier Ltd. All rights reserved.

Item type: Article
ID code: 40774
Keywords: development, validation, probe, accurate monitoring, continuous monitoring, squamo-columnar junction, location, fluoroscopy , magnet, hall effect, Bioengineering, Radiology Nuclear Medicine and imaging, Biophysics
Subjects: Technology > Engineering (General). Civil engineering (General) > Bioengineering
Department: Faculty of Engineering > Bioengineering
Related URLs:
Depositing user: Pure Administrator
Date Deposited: 08 Aug 2012 12:59
Last modified: 09 Jul 2014 05:04
URI: http://strathprints.strath.ac.uk/id/eprint/40774

Actions (login required)

View Item