Picture of Open Access badges

Discover Open Access research at Strathprints

It's International Open Access Week, 24-30 October 2016. This year's theme is "Open in Action" and is all about taking meaningful steps towards opening up research and scholarship. The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Explore recent world leading Open Access research content by University of Strathclyde researchers and see how Strathclyde researchers are committing to putting "Open in Action".


Image: h_pampel, CC-BY

A high voltage pulsed power supply for capillary discharge waveguide applications

Abu-Azoum, Salima Saleh and Wiggins, Mark and Issac, Riju and Welsh, Gregor H. and Vieux, Gregory and Ganciu, Mihai and Jaroszynski, Dino (2011) A high voltage pulsed power supply for capillary discharge waveguide applications. Review of Scientific Instruments, 82 (6). ISSN 0034-6748

Full text not available in this repository. (Request a copy from the Strathclyde author)


We present an all solid-state, high voltage pulsed power supply for inducing stable plasma formation (density ∼1018 cm−3) in gas-filled capillary discharge waveguides. The pulser (pulse duration of 1 μs) is based on transistor switching and wound transmission line transformer technology. For a capillary of length 40 mm and diameter 265 μm and gas backing pressure of 100 mbar, a fast voltage pulse risetime of 95 ns initiates breakdown at 13 kV along the capillary. A peak current of ∼280 A indicates near complete ionization, and the r.m.s. temporal jitter in the current pulse is only 4 ns. Temporally stable plasma formation is crucial for deploying capillary waveguides as plasma channels in laser-plasma interaction experiments, such as the laser wakefield accelerator.