Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

A high voltage pulsed power supply for capillary discharge waveguide applications

Abu-Azoum, Salima Saleh and Wiggins, Mark and Issac, Riju and Welsh, Gregor H. and Vieux, Gregory and Ganciu, Mihai and Jaroszynski, Dino (2011) A high voltage pulsed power supply for capillary discharge waveguide applications. Review of Scientific Instruments, 82 (6). ISSN 0034-6748

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We present an all solid-state, high voltage pulsed power supply for inducing stable plasma formation (density ∼1018 cm−3) in gas-filled capillary discharge waveguides. The pulser (pulse duration of 1 μs) is based on transistor switching and wound transmission line transformer technology. For a capillary of length 40 mm and diameter 265 μm and gas backing pressure of 100 mbar, a fast voltage pulse risetime of 95 ns initiates breakdown at 13 kV along the capillary. A peak current of ∼280 A indicates near complete ionization, and the r.m.s. temporal jitter in the current pulse is only 4 ns. Temporally stable plasma formation is crucial for deploying capillary waveguides as plasma channels in laser-plasma interaction experiments, such as the laser wakefield accelerator.