Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

New technique for determining the critical loads of a thin coating on a tool–steel substrate by considering the initiation of cracks in the coating

Feng, Jiling and Qin, Yi and Raghavan, Rejin and Michler, J and Almandoz, E. and Fuentes, G.G. (2012) New technique for determining the critical loads of a thin coating on a tool–steel substrate by considering the initiation of cracks in the coating. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 226 (7). pp. 1205-1212. ISSN 0954-4054

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

In this article, a mathematical algorithm is derived to accurately determine the critical load of indentation for the initiation of cracks on the surface of a hard coating on a soft substrate, based on the measurement of the diameter of circumferentialcracks in micro-indentation impressions. The critical load required for the initiation of the first crack predicted using this technique is shown to be in good agreement with experimental results, indicating the feasibility of the technique proposed. The rationality of the approach proposed was further explored by investigating the fracture mechanism of the surface in a multilayer-coated surface using a finite element model, which was developed with the parameterised modelling approach, in combination with the cohesive-zone model.