Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

New technique for determining the critical loads of a thin coating on a tool–steel substrate by considering the initiation of cracks in the coating

Feng, Jiling and Qin, Yi and Raghavan, Rejin and Michler, J and Almandoz, E. and Fuentes, G.G. (2012) New technique for determining the critical loads of a thin coating on a tool–steel substrate by considering the initiation of cracks in the coating. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 226 (7). pp. 1205-1212. ISSN 0954-4054

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

In this article, a mathematical algorithm is derived to accurately determine the critical load of indentation for the initiation of cracks on the surface of a hard coating on a soft substrate, based on the measurement of the diameter of circumferentialcracks in micro-indentation impressions. The critical load required for the initiation of the first crack predicted using this technique is shown to be in good agreement with experimental results, indicating the feasibility of the technique proposed. The rationality of the approach proposed was further explored by investigating the fracture mechanism of the surface in a multilayer-coated surface using a finite element model, which was developed with the parameterised modelling approach, in combination with the cohesive-zone model.