Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Dynamics characteristics of a micro-sheet-forming machine system

Qin, Yi and Razali, Akhtar Razul and Zhou, Mei and Zhao, Jie and Harrison, Colin and Wan Nawang, Wan Adlan (2012) Dynamics characteristics of a micro-sheet-forming machine system. Key Engineering Materials, 504-506 (3). pp. 599-604. ISSN 1013-9826

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Dynamic characteristics of a micro-forming machine system are of significant importance to be considered if high-precision micro-parts are to be produced. This is because forming tolerances may be within a range of sub-microns up to 5-15% of the thickness of a thin sheet-metal (e.g. <100µm) being used in micro-sheet-forming. Achievability of the quality parts often vary with the machine-system performance and process parameters being set, and it largely depends on the understanding of the machine and tool system's dynamic characteristics and effectiveness of the control of the machine and the process. Nevertheless, there has been lack of the effort in this field of research. Significant number of the efforts in this field were focused mainly on discrete and/slow processes where the dynamic characteristics of the forming systems were often neglected. This paper presents the dynamic characteristics of an autonomous micro-sheet-forming machine system and its effect towards the produced parts' quality. These have been studied by combining finite element analysis and forming experiment, with a particular focus on the combined effects from the machine, tooling system and the sheet-metal feeding system (the strip feeder). The results showed that, besides importance of the dynamic performance of the machine and the tool-system, dynamic characteristics of the material-feeding plays an important part in determining the parts’ quality produced.