Picture of a sphere with binary code

Making Strathclyde research discoverable to the world...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. It exposes Strathclyde's world leading Open Access research to many of the world's leading resource discovery tools, and from there onto the screens of researchers around the world.

Explore Strathclyde Open Access research content

Gelatine and gelatine/elastin nanocomposites for vascular grafts : processing and characterisation

Lamprou, Dimitrios and Zhdan, P and Labeed, F and Lekakou, C (2011) Gelatine and gelatine/elastin nanocomposites for vascular grafts : processing and characterisation. Journal of Biomaterials Applications, 26 (2). pp. 209-226.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

This study involves the preparation, microstructural, physical, mechanical, and biological characterization of novel gelatine and gelatine/elastin gels for their use in the tissue engineering of vascular grafts. Gelatine and gelatine/elastin nanocomposite gels were prepared via a sol-gel process, using soluble gelatine. Gelatine was subsequently cross-linked by leaving the gels in 1% glutaraldehyde. The cross-linking time was optimized by assessing the mass loss of the cross-linked gels in water and examining their mechanical properties in dynamic mechanical tests. Atomic force microscopy (AFM) studies revealed elastin nanodomains, homogeneously distributed and embedded in a bed of gelatine nanofibrils in the 30/70 elastin/gelatine gel. It was concluded that the manufactured nanocomposite gels resembled natural arteries in terms of microstructure and stiffness. The biological characterization involved the culture of rat smooth muscle cells (SMCs) on tubular gelatine and gelatine/ elastin nanocomposite gels, and measurements of the scaffold diameter and the cell density as a function of time.