Picture of two heads

Open Access research that challenges the mind...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including those from the School of Psychological Sciences & Health - but also papers by researchers based within the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Encapsulation of water insoluble drugs in mesoporous silica nanoparticles using supercritical carbon dioxide

Patil, A and Chirmade, U.N. and Trivedi, V and Lamprou, Dimitrios and Urquhart, Andrew and Douroumis, D. (2011) Encapsulation of water insoluble drugs in mesoporous silica nanoparticles using supercritical carbon dioxide. Journal of Nanomedicine and Nanotechnology, 2 (3). ISSN 2157-7439

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Mesoporous silica nanoparticles MCM – 41 were synthesized with two dimensional hexagonal p6mm symmetry, high specific surface area(~ 980m2/g) narrow pore size and an average particle size of 186 nm. The produced nanoparticles were used to encapsulate carbamazepine through a supercritical carbon dioxide process combined with various organic solvents. Supercritical processing was found to provide increased drug encapsulation. The loaded MCM - 41 nanoparticles were analyzed using X–ray diffraction and differential scanning calorimetry (DSC) to investigate the crystalline state of the encapsulated carbamazepine and it was found to be dependent on the nature of the organic solvent. Carbamazepine showed increased dissolution rates under sink conditions. Viability studies of Caco – 2 cells demonstrated negligible cytotoxicity for the MCM–41 nanoparticles.