Picture of Open Access badges

Discover Open Access research at Strathprints

It's International Open Access Week, 24-30 October 2016. This year's theme is "Open in Action" and is all about taking meaningful steps towards opening up research and scholarship. The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Explore recent world leading Open Access research content by University of Strathclyde researchers and see how Strathclyde researchers are committing to putting "Open in Action".


Image: h_pampel, CC-BY

The effects of geotechnical material properties on the convergence of iterative solvers

Augarde, Charles and Crouch, R.S. and Li, T and Ramage, Alison (2008) The effects of geotechnical material properties on the convergence of iterative solvers. In: The 12th international conference of international association for computer methods and advances in geomechanics (IACMAG). UNSPECIFIED.


Download (420kB) | Preview


There is increasing interest in the use of iterative rather than direct solvers for geotechnical finite element analysis. For large 3D problems iterative solvers offer the only possibility of economical solution on a desktop PC. The major stumbling block with iterative solvers is ensuring fast convergence to a suitably accurate solution. The system of equations is always “preconditioned” to improve convergence and the design of preconditioners is a current hot topic in many areas of computational engineering. Effective preconditioning for geotechnical FE is particularly difficult due to (a) the wide range of elasto-plastic constitutive models used and (b) the changing nature of the equations during analysis (due to development of zones of plasticity for instance). In this paper we examine the features of some elasto-plastic material models that affect convergence of iterative solution methods, focussing on analysis of condition numbers of stiffness matrices. It is well-known that frictional material models lead to unsymmetric systems of equations and here we examine the role of the angle of dilation on system condition. The use of the consistent constitutive matrix, instead of the standard constitutive matrix is shown to have an effect on the condition numbers of the systems to be solved.