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Abstract

We study asymptotic properties of spatially non-homogeneous random walks with
non-integrable increments, including transience, almost-sure bounds, and existence
and non-existence of moments for first-passage and last-exit times. In our proofs we
also make use of estimates for hitting probabilities and large deviations bounds. Our
results are more general than existing results in the literature, which consider only
the case of sums of independent (typically, identically distributed) random variables.
We do not assume the Markov property. Existing results that we generalize include
a circle of ideas related to the Marcinkiewicz–Zygmund strong law of large numbers,
as well as more recent work of Kesten and Maller. Our proofs are robust and use
martingale methods. We demonstrate the benefit of the generality of our results by
applications to some non-classical models, including random walks with heavy-tailed
increments on two-dimensional strips, which include, for instance, certain general-
ized risk processes.
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1 Introduction

There is an extensive and rich theory of sums of independent, identically distributed
(i.i.d.) random variables (classical ‘random walks’): see for instance the books of Kallen-
berg [17, Chapter 9], Loève [27, §26.2], or Stout [38, §3.2]. When the summands are
integrable, the (first-order) asymptotic behaviour is governed by the mean. Completely
different phenomena occur when the mean does not exist: see classical references such
as [4, 8, 11] or more recent work such as [6, 15, 24]. In this paper we study an exten-
sion of this problem to general stochastic processes with non-integrable increments to
include, for example, spatially non-homogeneous random walks.
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Non-homogeneous random walks with non-integrable increments

Let (Xt)t∈Z+ be a stochastic process onR adapted to the filtration (Ft)t∈Z+ . (Through-
out the paper we set Z+ := {0, 1, 2, . . .} and N := {1, 2, . . .}.) We will be concerned with
the asymptotic behaviour of Xt given ‘heavy-tailed’ conditions on its increments. As
we present our general results, it is helpful to keep in mind the classical independent-
increments case, where Xt = St given by S0 := 0 and, for t ∈ N, St :=

∑t
s=1 ζs for a

sequence of independent (often, i.i.d.) R-valued random variables ζ1, ζ2, . . .. Thus we
start with a brief summary of some known results in that setting. Many of the results
that we discuss for random walks have analogues for suitable Lévy processes: see e.g.
the book of Sato [35], particularly Sections 37 and 48.

A classical result of Kesten [18, Corollary 3] states that if ζ1, ζ2, . . . are i.i.d. random
variables with E|ζ1| =∞, then as t→∞, t−1St either: (i) tends to +∞ a.s.; (ii) tends to
−∞ a.s.; or (iii) satisfies

−∞ = lim inf
t→∞

t−1St < lim sup
t→∞

t−1St = +∞, a.s. (1.1)

Erickson [8] gives criteria for classifying such behaviour. Other classical results deal
with the growth rate of the upper envelope of St, i.e., determining sequences at for
which |St| ≥ at infinitely often (or not), or St ≥ at infinitely often; here we mention the
work of Feller [11], as well as results related to the Marcinkiewicz–Zygmund strong law
of large numbers (see e.g. [20, Theorem 1]). The lower envelope behaviour, i.e., when
|St| ≥ at all but finitely often, is considered by Griffin [13] (particularly Theorem 3.5);
see also Pruitt [32].

Note that (1.1) can hold and St be transient (with respect to bounded sets); Loève
[27, §26.2] gives the example of a symmetric stable random walk without a mean. The
general criterion for deciding between transience and recurrence is due to Chung
and Fuchs (see e.g. [17, Theorem 9.4] or [27, §26.2]), and is rather subtle: Shepp
showed [37] that there exist distributions for ζ1 with arbitrarily heavy tails but for
which St is still recurrent. By assuming additional regularity for the distribution of ζ1,
one can obtain more tractable criteria for recurrence; Shepp gives a criterion when the
distribution of ζ1 is symmetric [36, Theorem 5].

In the present paper we extend aspects of this classical theory to a much more gen-
eral setting, in which Xt is an (Ft)t∈Z+ -adapted process whose increments satisfy cer-
tain moment or tail conditions. Our primary interest is the case of one-sided transience,
when Xt → +∞ a.s. or Xt → −∞ a.s. We give criteria classifying such behaviour, and
quantify the rate of escape via almost-sure bounds. We also quantify the transience by
studying the existence and non-existence of moments for first passage times and last
exit times; in the setting of Xt = St a sum of i.i.d. random variables, corresponding
sharp results are given by Kesten and Maller [19]. We state our results for this model
in Section 2.

Our proofs are robust and are based on semimartingale ideas, and so are quite
different from the arguments used for the i.i.d. case. Semimartingale techniques are
by now well established for stochastic systems that are ‘near-critical’ in some sense
and whose increments have at least one moment; see for example [2,10,25,26,29,30].
One contribution of the present paper is to show that essentially similar methods are
equally powerful in the heavy-tailed setting. While not as sharp as the results available
in the i.i.d. case, our results are considerably more general, and our proofs are relatively
short, and based on some intuitively appealing ideas.

We give applications of our general results to Markov chains on strips of the form
A × Z for a countable (finite or infinite) set A. Random walks on strips or half strips
(A×Z+) have received attention in the literature (see [9,10,28] and references therein),
motivated by various applied problems, including queuing theory; they can also be
viewed as random walks with internal degrees of freedom, which were introduced by
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Non-homogeneous random walks with non-integrable increments

Sinai as a tool for studying the Lorentz gas (see e.g. [23]). We are concerned with
the case in which the Z-components of the increments of the walk have heavy tails;
the previous literature has considered only the light-tailed setting (typically, assuming
uniformly bounded increments). The heavy-tailed setting leads to new phenomena,
including a phase transition governed by the recurrence properties of the projection
onto A of the process.

We describe the strip model and corresponding results in detail in Section 3.1; to
finish this section we give one additional source of motivation, arising from risk theory,
and outline the main features of our results. A special case of our strip model can be
viewed as an insurance or portfolio model in the presence of rare catastrophes. In the
Markov chain (Ut, Vt) on A × Z, Vt ∈ Z is the total revenue of the insurance company,
or the total value of the portfolio, after t time units (days, say). The other variable,
Ut ∈ A, represents the current ‘state of the market’, with Ut = 0 (say) corresponding
to a catastrophe. Suppose that E[Vt+1 − Vt | Ut = `] = µ` > 0 is well-defined for
` 6= 0; µ` is the average daily profit, which, in the insurance model, is determined by
insurance premiums and the daily pay-out rate under usual conditions. On the other
hand, when Ut = 0, we assume Vt decreases by a non-integrable amount, representing
the catastrophic crash. Catastrophes are rare, so we assume that the time between
successive visits to Ut = 0 is itself non-integrable. Under what conditions is eventual
ruin assured? This model extends the standard risk process of insurance theory: see
e.g. [33, §3.5.1].

Our results show a crucial distinction between two possible scenarios, depending on
whether the induced Markov chain Ut is positive- or null-recurrent (Ut is itself a Markov
chain under the conditions that we impose). If Ut is positive-recurrent, the boundary
state 0 ∈ A dominates the asymptotics, and Vt → −∞. The case where Ut is null-
recurrent is more subtle, and we give conditions for Vt → −∞ or Vt → +∞ depending
on the tails of the increments of Vt at Ut = 0 and the tails of the return times of Ut
to state 0. We also quantify the rate of transience, giving rates at which Vt tends to
±∞. In the context of the risk model, our results confirm the expectation that pricing
is problematic in such genuinely heavy-tailed risk situations: in certain conditions, the
insurance company cannot stabilize the situation however large µ`, ` 6= 0 may be (i.e.,
however much premium it charges); we refer to Section 3.1 for precise statements.

2 Main results

We write ∆t := Xt+1 − Xt, t ∈ Z+, for the increments of Xt. For any real number
x, we write x+ := x1{x > 0} and x− := −x1{x < 0}, where ‘1’ denotes the indicator
function; thus x = x+ − x−.

For definiteness, we take X0 = 0 throughout. In most of our results, we impose
‘heavy tail’ conditions on either ∆+

t or ∆−t ; typically these conditions are one-sided (i.e.,
inequalities). The following basic result shows that, under the conditions of most of our
theorems, the process Xt has non-trivial asymptotic behaviour. The proofs of this and
of the other results in this section are given in Section 4.

Proposition 2.1. Suppose that either (i) there exist γ > 0, c > 0, and x0 <∞ for which
P[∆+

t > x | Ft] ≥ cx−γ , a.s., for all x ≥ x0 and all t; or (ii) there exist γ ∈ (0, 1), c > 0,
and x0 < ∞ for which E[∆+

t 1{∆+
t ≤ x} | Ft] ≥ cx1−γ , a.s., for all x ≥ x0 and all t; or

either (i) or (ii) holds with ∆−t instead of ∆+
t . Then

lim sup
t→∞

|Xt| =∞, a.s. (2.1)

In the i.i.d. case where Xt = St =
∑t
s=1 ζs and E|ζ1| = ∞, (2.1) follows from the

result of Kesten [18, Corollary 3] mentioned above, and (2.1) also holds automatically
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if Xt is an irreducible time-homogeneous Markov chain on a locally finite unbounded
subset of R.

Our first main result gives conditions under which Xt is transient to the right, i.e.,
Xt → +∞ a.s. as t→∞ (or transient to the left, by considering −Xt). Together with our
Theorem 2.6 below on the rate of escape, Theorem 2.2 can be viewed as an analogue of
Erickson’s [8] result in the case of a sum of i.i.d. random variables; in the i.i.d. case the
conclusion of Theorem 2.2 follows from [8, Corollary 1]. The results of [8] show that the
conditions in Theorem 2.2 are close to optimal (see also Remark 2.3 and the comments
in Section 6).

Theorem 2.2. Let α ∈ (0, 1) and β > α. Suppose that there exist C < ∞, c > 0, and
x0 <∞ for which, for all t,

E[(∆−t )β | Ft] ≤ C, a.s., (2.2)

and, for all x ≥ x0 and all t,

E[∆+
t 1{∆+

t ≤ x} | Ft] ≥ cx1−α, a.s. (2.3)

Then Xt → +∞ a.s. as t→∞.

Remark 2.3. Condition (2.3) is natural. For γ ≤ 1, (∆+
t )γ ≥ xγ−1∆+

t 1{∆+
t ≤ x} for any

x > 0, so (2.3) implies that E[(∆+
t )γ | Ft] = ∞ for any γ > α. A counterexample due

to K.L. Chung (see the Mathematical Reviews entry for [7]; also Baum [3]) shows that
(2.3) cannot be replaced by a condition on the moments of the increments, even in the
case of a sum of i.i.d. random variables. Chung’s example has, for α ∈ (0, 1) and β > α,
E[(ζ−1 )β ] < ∞ and E[(ζ+1 )α] = ∞, but E[ζ+1 1{ζ

+
1 ≤ x}] = o(x1−α) along a subsequence,

so (2.3) does not hold. For Xt = St as in Chung’s example, lim inft→∞Xt = −∞, a.s.

Our next two results deal with the growth rate of Xt, and provide almost-sure
bounds. First we have the following upper bounds.

Theorem 2.4. Suppose that there exist θ ∈ (0, 1], φ ∈ R, x0 <∞ and C <∞ such that,
for all x ≥ x0 and all t,

P[∆+
t ≥ x | Ft] ≤ Cx−θ(log x)φ, a.s. (2.4)

(i) If θ ∈ (0, 1), then, for any ε > 0, a.s., for all but finitely many t ∈ Z+,

Xt ≤ t1/θ(log t)
φ+2
θ +ε.

(ii) If θ = 1, then, for any ε > 0, a.s., for all but finitely many t ∈ Z+,

Xt ≤ t(log t)(1+φ)
++1+ε.

Remark 2.5. In the case of a sum of independent random variables, Theorem 2.4 is
slightly weaker than optimal. Suppose that ζ1, ζ2, . . . are independent, and that for some
θ ∈ (0, 1) and φ ∈ R,

sup
k∈N

lim sup
x→∞

(xθ(log x)−φP[|ζk| ≥ x]) <∞.

Then, with St =
∑t
s=1 ζs, for any ε > 0, a.s., for all but finitely many t ∈ Z+,

|St| ≤ t1/θ(log t)
φ+1
θ +ε. (2.5)

The bound (2.5) belongs to a family of classical results with a long history; the case φ = 0

is due to Lévy and Marcinkiewicz (quoted by Feller [11, p. 257]), and the general case
of (2.5) follows for example from a result of Loève [27, p. 253]. Under the additional
condition that the summands are identically distributed, sharp results are given by
Feller [11, Theorem 2]; for a recent reference, see [24]. Related results in the i.i.d. case
are also given by Chow and Zhang [5] (see also [20, Theorem 2]).
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Non-homogeneous random walks with non-integrable increments

The next result shows that if we impose a variant of the condition (2.3) in Theorem
2.2, not only does Xt → +∞, a.s., but it does so at a particular rate of escape.

Theorem 2.6. Let α ∈ (0, 1) and β > α. Suppose that there exist C < ∞, c > 0, and
x0 <∞ for which (2.2) holds, and

P[∆+
t > x | Ft] ≥ cx−α, a.s., (2.6)

for all x ≥ x0 and all t. Then for any ε > 0, a.s., for all but finitely many t ∈ Z+,

Xt ≥ t1/α(log t)−(1/α)−ε.

Remark 2.7. Note that (2.6) implies that, a.s.,

E[(∆+
t )α | Ft] =

∫ ∞
0

P[∆+
t > y1/α | Ft]dy ≥ c

∫ ∞
x0

y−1dy =∞.

Conditions (2.3) and (2.6) are closely related, but neither implies the other. However, if
one replaces the inequalities by equalities, the former implies the latter: more generally,
see Lemma 6.1 in the Appendix. In the case where Xt = St is a sum of i.i.d. random
variables, a weaker version of Theorem 2.6 was obtained by Derman and Robbins [7]
and stated in a stronger form by Stout [38, Theorem 3.2.6]; although Stout’s statement
is still weaker than our Theorem 2.6, his proof gives essentially the same result (in the
i.i.d. case). Also relevant in the i.i.d. case is a result of Chow and Zhang [5, Theorem 1].
Chung’s counterexample (see Remark 2.3) shows that the condition (2.6) cannot be
replaced by a moments condition, for instance.

Theorems 2.4 and 2.6 have the following immediate corollary.

Corollary 2.8. Let α ∈ (0, 1) and β > α. Suppose that (2.2) holds for some C <∞ and
all t, and that, uniformly in t and ω,

lim
x→∞

logP[∆+
t > x | Ft]

log x
= −α, a.s.

Then

lim
t→∞

logXt

log t
=

1

α
, a.s.

Proof. Note that the uniformity in the condition in the corollary ensures that for any
ε > 0 there exists x0 <∞ such that, for all x ≥ x0 and all t,

x−α−ε ≤ P[∆+
t > x | Ft] ≤ x−α+ε, a.s.

Theorem 2.4 with the upper bound in the last display and (2.2) then shows that for any
ε > 0, a.s., Xt ≤ t(1/α)+ε for all but finitely many t. On the other hand, Theorem 2.6 with
the lower bound in the last display and (2.2) shows that for any ε > 0, a.s., Xt ≥ t(1/α)−ε
for all but finitely many t. Since ε > 0 was arbitrary, the result follows.

For any x ∈ R, write
τx := min{t ∈ Z+ : Xt ≥ x}, (2.7)

for the first passage time into the half-line [x,∞); here and throughout the paper we
adopt the usual convention that min ∅ :=∞. Under the conditions of Theorem 2.2, Xt →
+∞, a.s., so that τx < ∞ a.s., for all x ∈ R. It is natural to study the tails or moments
of the random variable τx in order to quantify the transience in a precise sense. In the
i.i.d. case for Xt = St, sharp results on the existence or non-existence of moments for
τx are given by Kesten and Maller [19, Theorem 2.1]; see [19] for references to earlier
work. In our more general setting, we have the following two results.
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Non-homogeneous random walks with non-integrable increments

Theorem 2.9. Let α ∈ (0, 1) and β > α. Suppose that there exist c > 0, C < ∞, and
x0 < ∞ for which (2.2) holds for all t and (2.3) holds for all x ≥ x0 and all t. Then for
any x ∈ R and any p ∈ [0, β/α), E[τpx ] <∞.

Theorem 2.10. Let α ∈ (0, 1] and β > 0. Suppose that, for some C < ∞, E[(∆+
t )α |

Ft] ≤ C a.s. for all t, and E[(∆−t )β | Ft] = ∞ a.s. for all t. Then, for any x > 0,

E[τ
β/α
x ] =∞.

Note that in Theorem 2.9, β/α > 1, so in particular E[τx] < ∞ for any x ∈ R. The
results of Kesten and Maller [19] in the i.i.d. case show that the conditions in Theorems
2.9 and 2.10 are not far from optimal: see also the comments in Section 6.

Our final results for this section concern last exit times. For x ∈ R, let

λx := max{t ∈ Z+ : Xt ≤ x}, (2.8)

the last time (if finite) at which Xt ∈ (−∞, x]. Again, if Xt → +∞ a.s. (such as under
the conditions of Theorem 2.2) then λx < ∞ a.s. for all x ∈ R, and the moments of the
random variables λx provide a quantitative characterization of the transience. Again,
in the i.i.d. case sharp results are given by Kesten and Maller [19, Theorem 2.1].

Theorem 2.11. Let α ∈ (0, 1) and β > α. Suppose that there exist c > 0, C < ∞, and
x0 < ∞ for which (2.2) holds for all t and (2.3) holds for all x ≥ x0 and all t. Then for
any x ∈ R and any p ∈ [0, (β/α)− 1), E[λpx] <∞.

Theorem 2.12. Let α ∈ (0, 1] and β > α. Suppose that there exist c > 0, C < ∞,
and x0 < ∞ such that E[(∆+

t )α | Ft] ≤ C a.s. for all t, and, for all x ≥ x0 and all t,
P[∆−t > x | Ft] ≥ cx−β a.s. Then for any x ∈ R and any p > (β/α)− 1, E[λpx] =∞.

The rest of the paper is organized as follows. In Section 3 we give applications of our
results from Section 2 to some non-classical models, including Markov chains on strips
with heavy-tailed increments. In Section 4 we prove our general results from Section 2,
and then in Section 5 we prove the results on applications given in Section 3. Finally, in
Section 6, we make some additional remarks on some of the conditions in our theorems
and their relationship to conditions in the literature on sums of i.i.d. random variables.

Finally, we make a note on notation. We reserve the standard Landau O( · ), o( · )
notation for situations in which the implicit constants are non-random, i.e., the implicit
inequalities are uniform in probability space elements ω (in some set of probability 1).
So, for example, Zt = O(at), a.s., if and only if there exist some finite absolute constants
C0 and t0 for which Zt ≤ C0at, a.s., for all t ≥ t0. In situations where it is convenient
to extend the notation to allow C0 = C0(ω) or t0 = t0(ω) to be random, we augment the
notation and write Oω( · ), oω( · ) to make the distinction clear.

3 Applications

3.1 Heavy-tailed random walks on strips

In this section we describe an application of the one-dimensional results of Section 2
to a higher-dimensional model. The model we consider will be a random walk on a strip.
Such models are of interest in various contexts: see [9] for a selection of references,
including applications to communications systems, queueing models, and random walks
with internal degrees of freedom.

Denote by Sk := {0, 1, . . . , k − 1} × Z the strip of width k, and by S∞ := Z+ × Z the
infinite-width strip.

Starting with early work of Malyshev [28], random walks on finite-width strips Sk (or
half-strips {0, 1, . . . , k − 1} × Z+) have received some attention in the literature; see [9]
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and [10, §3.1]. The random walks in periodic environments described by Key [21, §9] are
essentially random walks on strips; what we call strips are also known as ladders, see
e.g. [31]. In these previous studies, the increments of the walk have been integrable. In
the present paper we are primarily interested in the case of an infinite-width strip with
non-integrable increments for the random walk, which can give rise to very different
and rather subtle phenomena. The model and results that we describe in this section
can be stated in more generality in terms of random walks with a distinguished subset
of the state space: for ease of exposition, we defer the more general description to
Section 3.2.

We consider a Markov chain (Ut, Vt) on Sk or S∞; the first coordinate of the chain
describes which line the chain is currently on, while the second coordinate describes
the location on the given line. The transition probabilities are given by

P[(Ut+1, Vt+1) = (`′, x+ d) | Ut = `, Vt = x] = φ(`, `′; d), (3.1)

where φ satisfies the obvious conditions; the right-hand side of (3.1) does not depend on
x, so the transition law is spatially homogeneous in the second coordinate. In [9,10] the
transition law has the same partial homogeneity as expressed by (3.1); in addition, [9,
10] make an assumption of a uniform one-sided bound on the increments, appropriate
for the half-strip problem. The translation invariance condition (3.1) is also standard in
the literature on random walks with internal degrees of freedom: see e.g. [23].

A consequence of (3.1) is that

P[Ut+1 = `′ | Ut = `] =
∑
d∈Z

φ(`, `′; d) =: q`,`′ .

Thus the projection (Ut)t∈Z+ is itself a Markov chain, which records the current line
that the random walk is on; this Markov chain has transition probabilities q`,`′ . In the
terminology of [10, §3.1], Ut is the induced chain.

We remark that Wt := (Ut, Vt−Vt−1) also describes a Markov chain, with transitions
P[Wt+1 = (`′, d′) | Wt = (`, d)] = φ(`, `′; d′); one may write Vt = V0 +

∑t
s=1 v(Ws) where

v(`, d) = d, so that Vt may be represented as an additive functional of the Markov chain
Wt. Additive functionals of Markov chains have been extensively studied, primarily in
the case in which the underlying chain is ergodic: see e.g. [16,22,34].

The primary assumption in this section is the following.

(B1) Suppose that the transition probabilities of (Ut, Vt) are given by (3.1). Moreover,
suppose that Ut is an irreducible Markov chain and that Ut is recurrent.

Of course, in the finite-width setting, irreducibility of Ut automatically implies recur-
rence (in fact, positive-recurrence), so the recurrence part of assumption (B1) is only
non-trivial in the infinite-width setting, when Ut ∈ Z+.

Remark 3.1. The structure of the strip is unimportant for our results. In fact, our
results extend to any appropriate model on A×Z for any countable set A, provided the
induced chain on A is recurrent; more generally, see Section 3.2. Regarded in this way,
this framework also contains the correlated or persistent random walk (see e.g. [12])
in which A = {±1} is a set of directions.

Suppose for now that the Markov chain (Ut)t∈Z+ has a unique stationary distribution
(π`)`∈{0,...,k−1} with π` > 0 for all `. In the case where the in-line jump distributions each
have a finite mean µ` = E[Vt+1−Vt | Ut = `], the recurrence classification of the random
walk on a strip depends on

∑
π`µ`: see [34] for a result along these lines for a broader

class of additive functionals of Markov chains. In the case of a half-strip, the additive
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functional representation is not directly available, and recurrence/transience results
are given in [10, §3.1]; an earlier result was obtained by Falin [9].

Here we are interested in the very different situation, in either the finite-width or
infinite-width case, in which at least one of the means µ` is not defined. We take the
0-line (the ‘boundary’) to be a distinguished line with heavy tails with exponent α to
the right, say; the other lines (the ‘bulk’) may also have heavy tails (with exponent β to
the left, say). Under what conditions does the boundary dominate? Or the bulk? The
results that we present below give conditions under which Vt → +∞ or Vt → −∞.

Our main interest in this section is the infinite-width case, for which the embedded
process Ut need not be positive-recurrent: clearly the recurrence properties of Ut are
crucial. Let ν := min{t ∈ N : Ut = 0} denote the time of the first return to the 0-line.
Then under (B1), Ut is positive-recurrent if E[ν] <∞ but null-recurrent if E[ν] =∞.

A basic example to bear in mind is the case in which when Ut = 0, Vt jumps only
in the positive direction with increments of tail exponent α ∈ (0, 1), while if Ut 6= 0, Vt
jumps in the negative direction with increments of tail exponent β. We give results that
show Vt → −∞ or Vt → +∞ depending on the relationship between α, β, and γ, the tail
exponent of ν; we also quantify the rate of escape of Vt.

To simplify our statements, we introduce some more notation. For x ≥ 0,

P[(Vt+1 − Vt)+ > x | Ut = `, Vt = z] =
∑
y>x

∑
`′

φ(`, `′; y) =: T+
` (x),

which depends only on ` and x, and not on z or t. Similarly, let

T−` (x) := P[(Vt+1 − Vt)− > x | Ut = `, Vt = z], and

M±` (β) := E[((Vt+1 − Vt)±)β | Ut = `, Vt = z].

First we consider the case where Ut is positive-recurrent. For example, suppose
that |µ`| < ∞ for all ` 6= 0, but that on line 0 the mean of Vt is undefined. In this
case we show that, in contrast to the case in which all the µ` are finite, this single line
dominates the asymptotic behaviour of the process. The intuition in this case is that the
process spends a positive fraction of its time in line 0, and so the long jumps from line
0 dominate.

Theorem 3.2. Suppose that (B1) holds and that Ut is positive-recurrent. Suppose that
there exist α ∈ (0, 1), β > α, and C <∞ such that (i) M−` (β) ≤ C for all `; (ii)

lim
x→∞

log T+
0 (x)

log x
= −α; (3.2)

and (iii) M+
` (β) ≤ C for all ` 6= 0. Then Vt → +∞ a.s. as t→∞, and, moreover,

lim
t→∞

log Vt
log t

=
1

α
, a.s.

Under conditions related in spirit to those in Theorem 3.2, including ergodicity of Ut
and heavy tails for the increments of Vt, certain results on convergence to stable laws
are obtained by Jara et al. [16].

In the case where Ut is null-recurrent, the intuition changes, since the process
spends only a vanishing fraction of its time in line 0. In this case the tail of ν becomes
crucial, and the effects of either the boundary or the bulk may dominate, as shown by
the contrast between the next two theorems.

EJP 17 (2012), paper 59.
Page 8/28

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v17-2216
http://ejp.ejpecp.org/


Non-homogeneous random walks with non-integrable increments

Theorem 3.3. Suppose that (B1) holds, Ut is null-recurrent, and, for some γ ∈ (0, 1],

lim
t→∞

logP[ν > t]

log t
= −γ. (3.3)

Suppose that there exist α ∈ (0, 1), β > 0, and C <∞ such that (i) M−` (β) ≤ C for all `;
(ii) (3.2) holds; and (iii) M+

` (β) ≤ C for all ` 6= 0. Then if α < γ(β ∧ 1), Vt → +∞ a.s. as
t→∞, and, moreover,

lim
t→∞

log Vt
log t

=
γ

α
, a.s.

Theorem 3.4. Suppose that (B1) holds, Ut is null-recurrent, and, for some γ ∈ (0, 1),
(3.3) holds. Suppose that there exist α, β ∈ (0, 1), δ > 0, and C < ∞ such that (i)
M+

0 (α) +M−0 (α) ≤ C; (ii) uniformly for all ` 6= 0,

lim
x→∞

log T−` (x)

log x
= −β;

and (iii) M+
` (β + δ) ≤ C for all ` 6= 0. Then if α > γβ, Vt → −∞ a.s. as t → ∞, and,

moreover,

lim
t→∞

log |Vt|
log t

=
1

β
, a.s.

Remark 3.5. In the present paper we do not address the behaviour of first passage or
last exit times for the random walk on a strip: we leave this as an open problem.

The next result demonstrates how, via a concrete family of examples, one may
achieve the condition (3.3). To do this, we take Ut to have asymptotically zero drift,
specifically, E[Ut+1 − Ut | Ut = x] to be of order 1/x. Fundamental work of Lam-
perti [25, 26] showed that such processes are near-critical from the point of view of
recurrence classification. We prove Proposition 3.6 using results from [1, 2], which
generalize Lamperti’s work [26].

Proposition 3.6. Let γ ∈ (0, 1]. Suppose that there exist C < ∞ and σ2 ∈ (0,∞) such
that the following hold for all x ∈ Z+:

P[|Ut+1 − Ut| ≥ C | Ut = x] = 0;

E[(Ut+1 − Ut)2 | Ut = x] = σ2 + o(1);

E[Ut+1 − Ut | Ut = x] =

(
1

2
− γ
)
σ2

x
+ o(1/x).

Then (3.3) holds for this γ ∈ (0, 1].

As an example, one may take Ut to be a simple symmetric random walk on Z+ with
reflection at 0; in that case, γ = 1/2.

3.2 Non-homogeneous random walk with a distinguished subset of the state
space

In this section we describe a model that generalizes the strip model described in
Section 3.1 (see Section 5.4 for details of the relationship), and whose study can, in
important aspects, be reduced to the study of the one-dimensional model of Section 2.
For this section, unlike Section 3.1, we do not assume the Markov property.

We consider a stochastic process (Yt)t∈Z+ adapted to a filtration (Gt)t∈Z+ and taking
values in a subset S of R with supS = +∞ and inf S = −∞. We assume that there is
a distinguished subset C ⊂ S of the state space. Roughly speaking, the process will
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jump out of the set C with heavier tails than in the remainder of the state space. For
convenience we assume 0 ∈ C and Y0 = 0 a.s., although this is inessential for our results.

Define σ0 := 0 and, for n ∈ N, σn := min{t > σn−1 : Yt ∈ C}. We assume that S and C
are sufficiently regular that the σn are stopping times:

(C1) Suppose that for all n, σn is a (Gt)t∈Z+ stopping time, and P[σn+1 <∞ | Gσn ] = 1.

If S is countable, then the stopping-time property in (C1) holds automatically with
Gn = σ(Y0, Y1, . . . , Yn) the natural filtration; in more generality, it suffices that C be a
measurable set, see e.g. [17, Lemma 7.6]. In (C1) we make the further assumption that
the σn are all finite, which amounts to a notion of recurrence for C.

For n ∈ Z+, take νn := σn+1 − σn, so that ν0 = σ1 is the first passage time into C and
ν1, ν2, . . . are the durations of the subsequent excursions from C. Note that since νn ≥ 1,
σn ≥ n and σn is increasing in n, so in particular σn → ∞ as n → ∞. Assumption (C1)
implies that νn <∞ for all n, a.s.

Write Dt := Yt+1−Yt for the increments of Yt. Our first result covers the case where
the average duration of the excursions from C is uniformly finite. We assume:

(C2) Suppose that there exists B <∞ such that E[νn | Gσn ] ≤ B, a.s., for all n.

Theorem 3.7. Suppose that (C1) and (C2) hold. Suppose there exist α ∈ (0, 1), β > α,
and C <∞ so that (i) E[(D−t )β | Gt] ≤ C a.s.; (ii) on {Yt ∈ C}, uniformly in t and ω,

lim
x→∞

logP[D+
t > x | Gt]

log x
= −α, a.s.; (3.4)

and (iii) on {Yt /∈ C}, E[(D+
t )β | Gt] ≤ C a.s. Then Yt → +∞ a.s., and, moreover,

lim
t→∞

log Yt
log t

=
1

α
, a.s.

In the case where the νn may not have a finite mean, we need to impose a mild
additional regularity condition on the tails of νn. Specifically, we assume:

(C3) Suppose that for some γ ∈ (0, 1], uniformly in n and ω,

lim
t→∞

logP[νn > t | Gσn ]

log t
= −γ, a.s.

The next result gives conditions for the influence of C to dominate.

Theorem 3.8. Suppose that (C1) and (C3) hold. Suppose that there exist α ∈ (0, 1),
β > 0, and C < ∞ such that (i) E[(D−t )β | Gt] ≤ C a.s.; (ii) on {Yt ∈ C}, (3.4) holds; and
(iii) on {Yt /∈ C}, E[(D+

t )β | Gt] ≤ C a.s. Then if α < γ(β ∧ 1), Yt → +∞ a.s., and

lim
t→∞

log Yt
log t

=
γ

α
, a.s.

The next result gives conditions for the influence of S \ C to dominate.

Theorem 3.9. Suppose that (C1) and (C3) hold and that γ ∈ (0, 1). Suppose that there
exist α, β ∈ (0, 1), δ > 0, and C < ∞ such that (i) on {Yt ∈ C}, E[|Dt|α | Gt] ≤ C a.s.; (ii)
on {Yt /∈ C}, uniformly in t and ω,

lim
x→∞

logP[D−t > x | Gt]
log x

= −β, a.s.;

and (iii) on {Yt /∈ C}, E[(D+
t )β+δ | Gt] ≤ C a.s. Then if α > γβ, Yt → −∞ a.s., and

lim
t→∞

log |Yt|
log t

=
1

β
, a.s.
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4 Proofs for Section 2

4.1 Overview

Our proofs are based on some semimartingale (or Lyapunov function) ideas. That is,
for appropriate choices of Lyapunov function f : R→ [0,∞) we study the process f(Xt);
typically we require that f(Xt) satisfy variations of Foster–Lyapunov style drift condi-
tions. The Lyapunov functions that we study are of two basic kinds: either f(x) → 0

or f(x) → ∞ as x → ±∞. These functions allow us to study different properties of the
process Xt. The technical details of the proofs consist of two main components: first
proving that f(Xt) satisfies a suitable drift condition, and then using semimartingale
ideas to extract information about the asymptotic behaviour of Xt itself. For example,
if f(Xt) satisfies a local submartingale/supermartingale condition, we can estimate hit-
ting probabilities for Xt via stopping-time arguments. Verification of drift conditions for
f(Xt) usually entails some Taylor’s formula expansions as well as some careful trunca-
tion ideas to deal with the heavy tails.

The remainder of this section is arranged as follows. In Section 4.2 we give some
fundamental semimartingale results that will form part of our toolbox, largely taken
from [2, 29]. In Section 4.3 we introduce our Lyapunov functions and, in a series of
lemmas, undertake the technical estimates that we need to apply our semimartingale
methods. Finally, in Section 4.4 we complete the proofs of the theorems.

4.2 Preliminaries

In this section we state some useful results from the literature that we will need. We
will use the following result on existence of passage-time moments for one-dimensional
stochastic processes, which is a direct consequence of Theorem 1 of [2].

Lemma 4.1. Let (Zt)t∈Z+ be an (Ft)t∈Z+ -adapted process on [0,∞). For z > 0, let
σz := min{t ∈ Z+ : Zt ≤ z}. Suppose that there exist C ∈ (0,∞) and η ∈ [0, 1) for which

E[Zt+1 − Zt | Ft] ≤ −CZηt , a.s.,

on {t < σz}. Then for any p ∈ [0, 1/(1− η)], E[σpz ] <∞.

The next result is contained in Theorem 3.2 of [29].

Lemma 4.2. Let (Zt)t∈Z+ be an (Ft)t∈Z+ -adapted process on [0,∞). Suppose that for
some B <∞, E[Zt+1−Zt | Ft] ≤ B, a.s. Then for any ε > 0, a.s., for all but finitely many
t ∈ Z+,

max
0≤s≤t

Zs ≤ t(log t)1+ε.

Finally, we give a maximal inequality that generalizes Lemma 3.1 of [29], which
covered the case where ν is a fixed, deterministic time.

Lemma 4.3. Let (Zt)t∈Z+ be an (Ft)t∈Z+ -adapted process on [0,∞), and let ν be an
(Ft)t∈Z+ stopping time. Suppose that for some B < ∞, on {t < ν}, a.s., E[Zt+1 − Zt |
Ft] ≤ B. Then for any x > 0,

P

[
max
0≤s≤ν

Zs ≥ x
]
≤ BE[ν] + E[Z0]

x
. (4.1)

Proof. It suffices to suppose that E[ν] < ∞, in which case ν < ∞ a.s. Write At =

E[Zt+1 − Zt | Ft], and let Yt = Zt +
∑t−1
s=0A

−
s ; so Y0 = Z0 and Yt ≥ Zt for all t. Then

E[Yt+1 − Yt | Ft] = E[Zt+1 − Zt | Ft] +A−t = A+
t ∈ [0, B], a.s.,
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on {t < ν}. Hence Yt∧ν is a nonnegative (Ft)t∈Z+ -adapted submartingale with

E[Y(s+1)∧ν − Ys∧ν | Fs] ≤ B1{s < ν}, a.s.

Taking expectations in the last display and summing from s = 0 to t− 1 we have

E[Yt∧ν ]− E[Y0] ≤ B
t−1∑
s=0

P[ν > s] ≤ BE[ν].

Doob’s submartingale inequality gives, for any x > 0,

P

[
max
0≤s≤t

Ys∧ν ≥ x
]
≤ E[Yt∧ν ]

x
≤ BE[ν] + E[Z0]

x
,

where the final inequality follows from the preceding display and the fact that Y0 = Z0.
Since Zt ≤ Yt for all t, the same bound holds with Zs∧ν replacing Ys∧ν ; since ν <∞ a.s.,
letting t→∞ we see max0≤s≤t Zs∧ν → max0≤s≤ν Zs a.s., completing the proof.

4.3 Technical results

In this section we prepare the ground for the proofs of our theorems from Sec-
tion 2; we complete the proofs in Section 4.4. In the first two results, we study
our first Lyapunov function, and obtain conditions under which a local submartin-
gale/supermartingale condition holds. Our first Lyapunov function fz,δ : R → [0, 1]

satisfies fz,δ(y)→ 0 as y →∞; it will enable us to estimate, among other things, hitting
probabilities for Xt.

Lemma 4.4. Let α ∈ (0, 1) and β > α. Suppose that there exist c > 0, C < ∞, and
x0 <∞ for which (2.2) holds and, for all x ≥ x0, (2.3) holds. For z ∈ R and δ > 0, define
the non-increasing function fz,δ : R→ [0, 1] by

fz,δ(y) :=

{
1 if y ≤ z
(1 + y − z)−δ if y > z

. (4.2)

Then for any δ ∈ (0, β − α) and some A > 0 sufficiently large, for any z ∈ R, a.s.,

E[fz,δ(Xt+1)− fz,δ(Xt) | Ft] ≤ 0, on {Xt > z +A}.

Proof. It suffices to suppose that z = 1. Let δ > 0, and let fδ := f1,δ be as defined
at (4.2). Let γ ∈ (0, 1); we will specify δ and γ later. Since fδ is non-increasing and
[0, 1]-valued, we have for y > 1 that

fδ(y + ∆t)− fδ(y) ≤
[
(y + ∆+

t )−δ − y−δ
]
1{∆+

t ≤ yγ}
+
[
(y −∆−t )−δ − y−δ

]
1{∆−t ≤ yγ}+ 1{∆−t > yγ}. (4.3)

We will take expectations on both sides of (4.3), conditioning on Ft and setting y = Xt.
The final term in (4.3) then becomes, by Markov’s inequality and (2.2),

P[∆−t > Xγ
t | Ft] = P[(∆−t )β > Xγβ

t | Ft] ≤ CX
−γβ
t , a.s. (4.4)

For the second term on the right-hand side of (4.3), since γ < 1, Taylor’s formula implies
that, as y →∞,[

(y −∆−t )−δ − y−δ
]
1{∆−t ≤ yγ} = δ(1 + o(1))y−1−δ∆−t 1{∆−t ≤ yγ}, (4.5)
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where the o(1) term is uniform in t and ω. Here we have for the product of the final two
terms in (4.5) that

∆−t 1{∆−t ≤ yγ} = (∆−t )β∧1(∆−t )(1−β)
+

1{∆−t ≤ yγ} ≤ (∆−t )β∧1yγ(1−β)
+

. (4.6)

Combining (4.5) and (4.6), taking y = Xt and using (2.2), we obtain that, a.s.,

E
[[

(Xt −∆−t )−δ −X−δt
]
1{∆−t ≤ X

γ
t } | Ft

]
= O(X

−1−δ+γ(1−β)+
t ), (4.7)

on {Xt > 1}, uniformly in t and ω. For the first term on the right-hand side of (4.3),
another application of Taylor’s formula implies that, as y →∞,[

(y + ∆+
t )−δ − y−δ

]
1{∆+

t ≤ yγ} = −δ(1 + o(1))y−1−δ∆+
t 1{∆+

t ≤ yγ}.

Setting y = Xt, taking expectations, and using (2.3) we obtain, for Xt sufficiently large,

E
[[

(Xt + ∆+
t )−δ −X−δt

]
1{∆+

t ≤ X
γ
t } | Ft

]
≤ −(cδ/2)X

−1−δ+γ(1−α)
t , a.s. (4.8)

Thus from (4.3), using the estimates (4.4), (4.7) and (4.8), we verify that E[fδ(Xt+1) −
fδ(Xt) | Ft] ≤ 0, on {Xt > A} for some A sufficiently large, provided that the negative
term arising from (4.8) dominates, i.e.,

−1− δ + γ(1− α) > −γβ, and − 1− δ + γ(1− α) > −1− δ + γ(1− β)+.

The second inequality holds since α < β ∧ 1. The first inequality holds provided we
choose δ ∈ (0, β − α), which we may do since α < β, and then choose γ ∈ ( 1+δ

1+β−α , 1).

Lemma 4.5. Let α ∈ (0, 1) and β > α. Suppose that there exist C < ∞, c > 0, and
x0 < ∞ for which E[(∆+

t )α | Ft] ≤ C a.s. and, for all x ≥ x0, P[∆−t ≥ x | Ft] ≥ cx−β a.s.
For z ∈ R and δ > 0, define fz,δ as at (4.2). Then for any δ > β − α and some A > 0

sufficiently large, for any z ∈ R, a.s.,

E[fz,δ(Xt+1)− fz,δ(Xt) | Ft] ≥ 0, on {Xt > z +A}.

Proof. As in the proof of Lemma 4.4, it suffices to take z = 1. Let δ > 0, and let fδ := f1,δ
be as defined at (4.2). Let γ ∈ (0, 1); we will specify δ and γ later. For y > 1 we have

fδ(y + ∆t)− fδ(y) ≥ [(y + ∆+
t )−δ − y−δ]1{∆+

t ≤ yγ}
+ (1− y−δ)1{∆−t ≥ y} − y−δ1{∆+

t > yγ}. (4.9)

In (4.9), we will set y = Xt. We bound the three terms on the right-hand side of (4.9).
For the first term, we have that by Taylor’s formula, as y →∞, since γ < 1,[

(y + ∆+
t )−δ − y−δ

]
1{∆+

t ≤ yγ} = −δ(1 + o(1))y−1−δ∆+
t 1{∆+

t ≤ yγ}, a.s.,

where, as usual, the o(1) term is uniform in t and ω. Similarly to (4.6), we have that
∆+
t 1{∆+

t ≤ yγ} ≤ (∆+
t )αy(1−α)γ , so that∣∣(y + ∆+
t )−δ − y−δ

∣∣1{∆+
t ≤ yγ} = O((∆+

t )αy(1−α)γ−1−δ), a.s.,

uniformly in t and ω. It follows that, on {Xt > 1}, a.s.,

E
[
|(Xt + ∆+

t )−δ −X−δt |1{∆+
t ≤ X

γ
t } | Ft

]
= O(X

(1−α)γ−1−δ
t E[(∆+

t )α | Ft])

= O(X
(1−α)γ−1−δ
t ), (4.10)
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uniformly in t and ω. For the second term on the right-hand side of (4.9), we have that
for some A > 1 sufficiently large, on {Xt > A}, a.s.,

E[(1−X−δt )1{∆−t ≥ Xt} | Ft] ≥ (1/2)P[∆−t ≥ Xt | Ft] ≥ (c/2)X−βt . (4.11)

For the third term on the right-hand side of (4.9), we have that, by Markov’s inequality,

E[X−δt 1{∆+
t > Xγ

t } | Ft] ≤ X−δt X−αγt E[(∆+
t )α | Ft] = O(X−δ−αγt ). (4.12)

Combining (4.9) with (4.10), (4.11) and (4.12) we have that on {Xt > A}, a.s.,

E[fδ(Xt+1)− fδ(Xt) | Ft] ≥ (c/2)X−βt +O(X−δ−αγt ) +O(X
(1−α)γ−1−δ
t ).

The positive X−βt term here dominates for A large enough provided that

−β > −δ − αγ and − β > (1− α)γ − 1− δ.

For any δ > β − α, the second inequality holds since α ∈ (0, 1) and γ < 1. Given any
such δ, the first inequality holds provided we choose γ ∈ (β−δα , 1).

Our next result deals with a Lyapunov function of a different kind: Wt → ∞ as
Xt → −∞. This function will allow us to study, amongst other things, passage-times for
Xt. In particular, Lemma 4.6 will be central to the proofs of Theorems 2.9 and 2.11.

Lemma 4.6. Let α ∈ (0, 1) and β > α. Suppose that there exist c > 0, C < ∞, and
x0 <∞ for which (2.2) holds and (2.3) holds for all x ≥ x0. For γ ∈ (α, β) and y ∈ R let
Wt := (y −Xt)

γ1{Xt < y}. Then the following hold.

(i) Take γ = β − ε. Then for any ε ∈ (0, β(β−α)1+β−α ) there exists a finite constant K such
that, for all t,

E[Wt+1 −Wt | Ft] ≤ K, a.s.

(ii) For any η ∈ (0, 1− (α/β)), we can choose x < y and γ ∈ (α, β) such that, for some
ε > 0, for all t, on {Xt < x},

E[Wt+1 −Wt | Ft] ≤ −εW η
t , a.s.

Proof. Fix y ∈ R and let x < y − 1. Also take γ ∈ (α, β) and θ ∈ (0, 1); we will make
more restrictive specifications for these parameters later. On {Xt < y − 1}, we have
(y −Xt)

θ < y −Xt and so

Wt+1 −Wt = (y −Xt −∆t)
γ1{Xt+1 < y} − (y −Xt)

γ

≤
[
(y −Xt −∆+

t )γ − (y −Xt)
γ
]
1{∆+

t ≤ (y −Xt)
θ}

+
[
(y −Xt + ∆−t )γ − (y −Xt)

γ
]
1{∆−t ≤ (y −Xt)

θ}
+ (y −Xt + ∆−t )γ1{∆−t ≥ (y −Xt)

θ}. (4.13)

We bound the three terms on the right-hand side of (4.13) in turn. For the first term,
we have from Taylor’s formula that, on {Xt < x},[

(y −Xt −∆+
t )γ − (y −Xt)

γ
]
1{∆+

t ≤ (y −Xt)
θ}

= −γ∆+
t (y −Xt)

γ−1(1 + o(1))1{∆+
t ≤ (y −Xt)

θ},

where the o(1) is uniform in t and ω as y−x→∞. Hence, taking expectations and using
(2.3), it follows that for a fixed y and any x for which y − x is large enough, a.s.,

E
[[

(y −Xt −∆+
t )γ − (y −Xt)

γ
]
1{∆+

t ≤ (y −Xt)
θ} | Ft

]
≤ −(cγ/2)(y −Xt)

γ−1+θ(1−α),

EJP 17 (2012), paper 59.
Page 14/28

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v17-2216
http://ejp.ejpecp.org/


Non-homogeneous random walks with non-integrable increments

on {Xt < x}. For the second term on the right-hand side of (4.13), a similar application
of Taylor’s formula yields, on {Xt < x}, for y − x sufficiently large,[

(y −Xt + ∆−t )γ − (y −Xt)
γ
]
1{∆−t ≤ (y −Xt)

θ}

≤ 2γ(y −Xt)
γ−1(∆−t )β∧1(∆−t )(1−β)

+

1{∆−t ≤ (y −Xt)
θ}

≤ 2γ(y −Xt)
γ−1+θ(1−β)+(∆−t )β∧1.

Taking expectations and using (2.2), we obtain, on {Xt < x},

E
[[

(y −Xt + ∆−t )γ − (y −Xt)
γ
]
1{∆−t ≤ (y −Xt)

θ} | Ft
]
≤ K(y −Xt)

γ−1+θ(1−β)+ , a.s.,

for a constant K not depending on t or ω. For the final term in (4.13), on {Xt < y − 1},

(y −Xt + ∆−t )γ1{∆−t ≥ (y −Xt)
θ} ≤ ((∆−t )1/θ + ∆−t )γ ≤ 2γ(∆−t )γ/θ.

Taking γ = θβ, which requires θ ∈ (α/β, 1), and using (2.2), we see that, on {Xt < y−1},

E
[
(y −Xt + ∆−t )γ1{∆−t ≥ (y −Xt)

θ} | Ft
]
≤ 2γC, a.s.

Combining these estimates and taking expectations in (4.13) we see that the negative
term dominates asymptotically provided

γ − 1 + θ(1− α) > 0 and γ − 1 + θ(1− α) > γ − 1 + θ(1− β)+.

The first inequality requires θ > 1/(1+β−α), which is a stronger condition than θ > α/β

that we had already imposed, but which can be achieved with θ ∈ (α/β, 1) since α < β.
The second inequality reduces to 1−α > (1−β)+ which is satisfied since α < β∧1. Part
(i) follows. Moreover, for γ = θβ, 1/(1 + β − α) < θ < 1, we can take y − x large enough
so that, for some ε > 0, on {Xt < x},

E[Wt+1 −Wt | Ft] ≤ −ε(y −Xt)
θβ−1+θ(1−α) = −εW η

t , a.s.,

where η = (θβ − 1 + θ(1 − α))/(θβ) can be anywhere in (0, 1 − (α/β)), by appropriate
choice of θ, which proves part (ii).

Lemma 4.6 has as a consequence the following tail bound, which is essentially a
large deviations result of the same kind as (but much more general than) those obtained
in [15] for the case Xt = St, a sum of i.i.d. nonnegative random variables; indeed, the
results in [15] show that Lemma 4.7 is close to best possible.

Lemma 4.7. Let α ∈ (0, 1) and β > α. Suppose that there exist c > 0, C < ∞, and
x0 <∞ for which (2.2) holds and (2.3) holds for all x ≥ x0. Then for any φ > 0 and any
ε > 0, as t→∞,

P

[
min
0≤s≤t

Xs ≤ −tφ
]

= O(t1−βφ+ε).

Proof. As in Lemma 4.6, choosing y = 0 there, let Wt = (−Xt)
γ1{Xt < 0}. For t > 0,

P

[
min
0≤s≤t

Xs ≤ −tφ
]
≤ P

[
max
0≤s≤t

Ws ≥ tφγ
]
.

Take γ = β − ε for ε ∈ (0, β(β−α)1+β−α ). Then by Lemma 4.6(i) and Lemma 4.3 with ν = t

(or [29, Lemma 3.1]), P
[
max0≤s≤tWs ≥ tφγ

]
= O(t1−φγ), which implies the result.

The next result gives a general condition for obtaining almost-sure upper bounds.
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Lemma 4.8. Let h : [0,∞) → [0,∞) be increasing and concave. Suppose that there
exists C < ∞ such that E[h(∆+

t ) | Ft] ≤ C, a.s. Then for any ε > 0, a.s., for all but
finitely many t ∈ Z+,

Xt ≤
t−1∑
s=0

∆+
s ≤ h−1(t(log t)1+ε).

Proof. Set Y0 := 0 and for t ∈ N let Yt :=
∑t−1
s=0 ∆+

s . Then Yt ≥ 0 is non-decreasing and
Xt ≤ X0 + Yt = Yt, since X0 = 0. Since h is nonnegative and concave, it is subadditive,
i.e., h(a+ b) ≤ h(a) + h(b) for a, b ∈ [0,∞). Hence

E[h(Yt + ∆+
t )− h(Yt) | Ft] ≤ E[h(∆+

t ) | Ft] ≤ C, a.s., (4.14)

by hypothesis. The almost-sure upper bound in Lemma 4.2 to Zt = h(Yt) implies that,
for any ε > 0, a.s., h(Yt) ≤ t(log t)1+ε, for all but finitely many t. Since h is increasing
and Xt ≤ Yt, it follows that for any ε > 0, a.s., h(Xt) ≤ t(log t)1+ε.

Finally, we need a result on the maxima of the increments of Xt.

Lemma 4.9. Suppose that for some α ∈ (0,∞), c > 0, and x0 <∞, for all x ≥ x0, (2.6)
holds. Then for any ε > 0, a.s., for all but finitely many t ∈ Z+,

max
0≤s≤t

∆+
s ≥ t1/α(log t)−(1/α)−ε.

Proof. By a telescoping conditioning argument, for x > 0,

P

[
max
0≤s≤t

∆+
s < x

]
= E

[
1{∆+

0 < x} · · ·E
[
1{∆+

t−1 < x}E
[
1{∆+

t < x} | Ft
]
| Ft−1

]
· · · | F0

]
.

Hence for any x ≥ x0, by repeated applications of (2.6),

P

[
max
0≤s≤t

∆+
s < x

]
≤

t∏
s=0

(1− cx−α) ≤ (1− cx−α)t. (4.15)

Taking x = t1/α(log t)q in (4.15) we obtain, for t sufficiently large,

P

[
max
0≤s≤t

∆+
s < t1/α(log t)q

]
≤
(
1− ct−1(log t)−αq

)t
= O

(
exp

(
−c(log t)−αq

))
,

which is summable over t ≥ 2 provided q < −1/α. Hence the Borel–Cantelli lemma
completes the proof.

4.4 Proofs of results in Section 2

First we give the proof of Proposition 2.1.

Proof of Proposition 2.1. We claim that under any of the conditions in the proposition,
it is the case that for any y ≥ 0 there exists δ(y) > 0 for which, for all t,

P[|∆t| > y | Ft] ≥ δ(y), a.s. (4.16)

Given (4.16), for any B < ∞, P[|Xt+1| > 2B | Ft] ≥ δ(3B), a.s., on {|Xt| ≤ B}. Suppose
that lim supt→∞ |Xt| = B <∞. But then,

∑
tP[|Xt+1| > 2B | Ft] =∞ a.s., which leads to

a contradiction by Lévy’s extension of the Borel–Cantelli lemma (see e.g. [17, Corollary
7.20]), and (2.1) is proved.

It remains to verify (4.16). Since |∆t| = ∆+
t + ∆−t , it suffices to verify (4.16) with

one of ∆+
t or ∆−t in place of |∆t|. In the case where, say, P[∆+

t > x | Ft] ≥ cx−γ , a.s.,
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for x ≥ x0 (condition (i) in the statement of the proposition), the claim is immediate. So
suppose that E[∆+

t 1{∆+
t ≤ x} | Ft] ≥ cx1−γ , a.s., for x ≥ x0 (condition (ii)). Then, for

any y ≥ 0, for x > y,

E[∆+
t 1{y ≤ ∆+

t ≤ x} | Ft] ≥ E[∆+
t 1{∆+

t ≤ x} | Ft]− y > 1, a.s.,

provided x > x0 + ((1 + y)/c)1/(1−γ), say. Then, a.s.,

1 < E[∆+
t 1{y ≤ ∆+

t ≤ x} | Ft] ≤ xP[y ≤ ∆+
t ≤ x | Ft] ≤ xP[∆+

t ≥ y | Ft],

which implies (4.16) in this case also.

Next, in the proof of Theorem 2.2, we use the Lyapunov function fz,δ defined at (4.2)
to estimate hitting probabilities for Xt.

Proof of Theorem 2.2. First we show that, under the conditions of the theorem,

P
[
lim inf
t→∞

Xt = −∞
]

= 0. (4.17)

Let a > 0, to be chosen later. For x ∈ R, set

νx := min{t ∈ Z+ : Xt > x+ a}; ηx := min{t ≥ νx : Xt ≤ x}.

In particular, since X0 = 0, we have that νx = 0 for all x < −a.
Let δ ∈ (0, β − α). Then Lemma 4.4 shows that, on {νx < ∞}, (fx−A,δ(Xt∧ηx))t≥νx is

a nonnegative supermartingale adapted to (Ft)t≥νx , and so converges a.s. as t → ∞ to
a finite limit, Lx, say. On {νx <∞}, we have by the supermartingale property that

E[fx−A,δ(Xt∧νx) | Fνx ] ≤ fx−A,δ(Xνx) ≤ (1 +A+ a)−δ, a.s.,

while by Fatou’s lemma, also on {νx <∞},

lim
t→∞

E[fx−A,δ(Xt∧ηx) | Fνx ] ≥ E[Lx | Fνx ]

≥ E[Lx1{ηx <∞} | Fνx ]

≥ (1 +A)−δP[ηx <∞ | Fνx ],

since, on {ηx <∞}, Xt∧ηx ≤ x for all t sufficiently large. So on {νx <∞} we have, a.s.,

P[ηx <∞ | Fνx ] ≤
(

1 +A+ a

1 +A

)−δ
.

Let ε > 0. Then we can take a sufficiently large so that P[ηx =∞ | Fνx ] ≥ 1− ε, a.s.,
on {νx < ∞}. For such a choice of a, suppose that x < −a; then νx < ∞ a.s. (indeed,
since X0 = 0, νx = 0 a.s.). Hence for such an x,

P
[
lim inf
t→∞

Xt > x
]

= P[ηx =∞] ≥ E [P[ηx =∞ | Fνx ]1{νx <∞}] ≥ 1− ε. (4.18)

It follows from (4.18) that

P
[
lim inf
t→∞

Xt = −∞
]
≤ P

[
lim inf
t→∞

Xt ≤ −a− 1
]
≤ ε.

Since ε > 0 was arbitrary, (4.17) follows.
Proposition 2.1 applies under condition (2.3). Hence, together with (2.1), (4.17)

implies that, a.s., lim supt→∞Xt = ∞; in other words, for any a > 0 and any x ∈ R,
νx <∞ a.s. Hence the argument for (4.18) extends to any x ∈ R, which implies that for
any x ∈ R, a.s., lim inft→∞Xt > x, so Xt →∞ a.s.
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Next we give the proofs of Theorems 2.4 and 2.6, based on the almost-sure bounds
given in Lemmas 4.8 and 4.9.

Proof of Theorem 2.4. First we prove part (i), so let θ ∈ (0, 1). For ε > 0, take h(x) =

(K + x)θ(log(K + x))−φ−1−ε. For a large enough choice of K ≥ 1, h is nonnegative,
increasing, and concave. Moreover, E[h(∆+

t ) | Ft] is uniformly bounded provided∑∞
k=1 h

′(k)P[∆+
t > k | Ft] is uniformly bounded; see e.g. [14, p. 76]. This is indeed the

case under the hypothesis of the theorem, by (2.4), since h′(x) = O(xθ−1(log x)−φ−1−ε).

Now (i) follows from Lemma 4.8, noting that h−1(x) = O(x1/θ(log x)
φ+1
θ +ε). The proof of

(ii) is similar, this time taking h(x) = (K + x)(log(K + x))−(φ+1)+−ε.

Proof of Theorem 2.6. Let ε > 0. Lemma 4.8 applied to −Xt with h(x) = xβ∧1, using
(2.2), shows that, a.s., for all but finitely many t,

t−1∑
s=0

∆−s ≤ t1/(β∧1)(log t)(1/(β∧1))+ε.

On the other hand, Lemma 4.9 implies that, a.s., for all but finitely many t,

t−1∑
s=0

∆+
s ≥ max

0≤s≤t−1
∆+
s ≥ t1/α(log t)−(1/α)−ε,

Combining these bounds and using the fact that α < β ∧ 1 we complete the proof.

Now we turn to the proofs of our results on first passage times. First we prove
Theorem 2.9, which uses the Lyapunov function Wt given in Lemma 4.6, together with
the general criterion Lemma 4.1.

Proof of Theorem 2.9. Define Wt = (y −Xt)
γ1{Xt < y} as in Lemma 4.6. For z > 0, let

σz = min{t ∈ Z+ : Wt ≤ z}. Since {Wt ≤ z} = {Xt ≥ y − z1/γ}, we have with τx as
defined by (2.7) that τx = σ(y−x)γ for x ≤ y. Now fix x ∈ R. Under the conditions of
the theorem, Lemma 4.6(ii) implies that, for any η ∈ (0, 1− (α/β)), for y > x sufficiently
large, on {t < σ(y−x)γ}, a.s.,

E[Wt+1 −Wt | Ft] ≤ −εW η
t .

Then Lemma 4.1 shows that for any x ∈ R, E[τpx ] = E[σp(y−x)γ ] <∞, for any p < β/α.

Next we prove our non-existence of moments result for τx. General semimartingale
analogues of Lemma 4.1 are available for non-existence results (see e.g. [2]) but typ-
ically require strong control (such as uniform boundedness) of the increments of the
process. Thus we use a different idea, based on Lemma 4.3: roughly speaking, we show
that with good probability Xt travels a long way in the negative direction with a single
heavy-tailed jump, and then must take a long time to come back.

Proof of Theorem 2.10. Fix x > 0 and let y < x. Let W ′t = (Xt − y)α1{Xt > y}. Then on
{Xt ≤ y}, W ′t+1 −W ′t ≤ (∆+

t )α. On the other hand, on {Xt > y},

W ′t+1 −W ′t ≤ (Xt + ∆+
t − y)α − (Xt − y)α ≤ (∆+

t )α,

by concavity since α ∈ (0, 1]. Hence for C < ∞ (not depending on y), E[W ′t+1 −W ′t |
Ft] ≤ C, a.s., so the maximal inequality (4.1) implies that, for any y < x,

P

[
max
0≤r≤s

W ′t+r ≥ (x− y)α | Ft
]
≤ Cs+W ′t

(x− y)α
, a.s.
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In particular, on {Xt ≤ y}, W ′t = 0 and so

P

[
max
0≤r≤s

Xt+r ≥ x | Ft
]
≤ P

[
max
0≤r≤s

W ′t+r ≥ (x− y)α | Ft
]
≤ Cs

(x− y)α
, a.s.

Setting s = (x−y)α/(2C) in the last display, we obtain that for some ε > 0 (not depending
on x or y), on {t < τx} ∩ {Xt ≤ y}, for any y < x,

P[τx ≥ ε(x− y)α | Ft] ≥ 1/2, a.s. (4.19)

Since X0 = 0 and x > 0, we have that {∆−0 > y−} implies {τx > 1} and {X1 ≤ y}. So
applying (4.19) at t = 1 we have that

P[τx ≥ ε(x− y)α] ≥ E
[
1{∆−0 > y−}P[τx ≥ ε(x− y)α | F1]

]
≥ 1

2
P[∆−0 > y−].

Taking y = −ε−1/αz1/α < 0, we have that for any z > 0,

P[τx ≥ z] ≥ P[τx ≥ ε(x− y)α] ≥ 1

2
P[∆−0 > ε−1/αz1/α].

Hence for any γ > 0,

E[τγx ] =

∫ ∞
0

P[τx > z1/γ ]dz ≥ 1

2

∫ ∞
0

P[∆−0 > ε−1/αz1/(αγ)]dz.

Using the substitution w = ε−γz we obtain

E[τγx ] ≥ 1

2
εγ
∫ ∞
0

P[∆−0 > w1/(αγ)]dw =
1

2
εγE[(∆−0 )αγ ],

which is infinite provided αγ ≥ β, i.e., γ ≥ β/α.

The final two proofs for this section concern our results on last exit times.

Proof of Theorem 2.11. Recall the definition of τx and λx from (2.7) and (2.8) respec-
tively. Fix x ∈ R and let y > x, to be specified later. For this proof, define the stopping
time ηy,x := min{t ≥ τy : Xt ≤ x}, the time of reaching (−∞, x] after having first
reached [y,∞). To prove our result on finiteness of moments for λx, we prove an upper
tail bound for λx. For y > x, {τy ≤ t} ∩ {ηy,x =∞} implies {λx ≤ t}, so

P[λx > t] ≤ P[ηy,x <∞] + P[τy > t]. (4.20)

We obtain an upper bound for P[ηy,x <∞]. Under the conditions of the theorem, Lemma
4.4 applies. It follows that for δ ∈ (0, β − α), on {τy < ∞}, (fx−A,δ(Xt∧ηy,x))t≥τy is a
nonnegative supermartingale adapted to (Ft)t≥τy , and hence converges a.s. as t → ∞
to a limit, Ly,x, say. Then, on {τy <∞}, by Fatou’s lemma,

fx−A,δ(Xτy ) ≥ E[Ly,x | Fτy ] ≥ E[fx−A,δ(Xηy,x)1{ηy,x <∞} | Fτy ]

≥ (1 +A)−δP[ηy,x <∞ | Fτy ].

By definition, on {τy <∞}, Xτy ≥ y, so fx−A,δ(Xτy ) ≤ (1 +A+ y − x)−δ. Hence,

P[ηy,x <∞] = E[P[ηy,x <∞ | Fτy ]1{τy <∞}] = O(y−δ). (4.21)

For the final term in (4.20), for y > 0, P[τy > t] = P [max0≤s≤tXs < y], where

P

[
max
0≤s≤t

Xs < y

]
≤ P

[
max
0≤s≤t

Xs ≤ y, min
0≤s≤t

Xs ≥ −y
]

+ P

[
min
0≤s≤t

Xs ≤ −y
]

≤ P
[

max
0≤s≤t−1

∆+
s ≤ 2y

]
+ P

[
min
0≤s≤t

Xs ≤ −y
]
. (4.22)
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We choose y = t(1/α)−ε, for ε ∈ (0, 1/α). Then we have from (4.15) that for c′ > 0,

P

[
max

0≤s≤t−1
∆+
s ≤ 2t(1/α)−ε

]
= O(exp{−c′tαε}). (4.23)

On the other hand, the φ = (1/α)− ε case of Lemma 4.7 implies that

P

[
min
0≤s≤t

Xs ≤ −t(1/α)−ε
]

= O(t1−(β/α)+ε). (4.24)

Using the bounds (4.23) and (4.24) in the y = t(1/α)−ε case of (4.22), we obtain

P

[
max
0≤s≤t

Xs < t(1/α)−ε
]

= O(t1−(β/α)+(β+1)ε). (4.25)

Thus taking y = t(1/α)−ε in (4.20) and δ as close as we wish to β − α, and combining
(4.21) with (4.25), we conclude that, for any ε > 0, P[λx > t] = O(t1−(β/α)+ε), which
yields the claimed moment bounds.

Proof of Theorem 2.12. Fix x ∈ R and let y > x. For this proof, define νt,x := min{s ≥
t : Xs ≤ x}, the first time of reaching (−∞, x] after time t. Similarly, set τt,y := min{s ≥
t : Xs ≥ y}. We have that, for r > 0,

P[λx > t] ≥ E [1{Xt ≤ r}P[νt,x <∞ | Ft]] . (4.26)

Under the conditions of the theorem, Lemma 4.5 applies. It follows that for δ >
β−α, (fx−A,δ(Xs∧νt,x∧τt,y ))s≥t is a nonnegative submartingale adapted to (Fs)s≥t; more-
over, it is uniformly bounded and so converges a.s. and in L1, as s → ∞, to the limit
fx−A,δ(Xνt,x∧τt,y ), since νt,x ∧ τt,y <∞ a.s., by (2.1), which is available since Proposition
2.1 applies under the conditions of the theorem. Hence, a.s.,

fx−A,δ(Xt) ≤ E[fx−A,δ(Xνt,x∧τt,y ) | Ft] ≤ P[νt,x <∞ | Ft] + fx−A,δ(y).

Since y was arbitrary, and fx−A,δ(y)→ 0 as y →∞, it follows that, a.s.,

P[νt,x <∞ | Ft] ≥ fx−A,δ(Xt) ≥ fx−A,δ(r),

on {Xt ≤ r}. Hence from (4.26) we obtain for r ≥ x,

P[λx > t] ≥ fx−A,δ(r)P[Xt ≤ r] ≥ (1 +A+ r − x)−δP[Xt ≤ r]. (4.27)

It remains to obtain a lower bound for P[Xt ≤ r], for a suitable choice of r. Let
Yt =

∑t−1
s=0 ∆+

s . Following the argument for (4.14), with h(y) = yα, α ∈ (0, 1], we may
apply Lemma 4.3 with ν = t (or [29, Lemma 3.1]) to Zt = Y αt to obtain

P

[
max
0≤s≤t

Y αs ≥ x
]

= P[Yt ≥ x1/α] ≤ Ctx−1,

for some C <∞ and all t ∈ Z+, x > 0, which implies that

P
[
Xt ≤ (2Ct)1/α

]
≥ P

[
Yt ≤ (2Ct)1/α

]
≥ 1/2,

since Xt ≤ X0 + Yt = Yt. Thus taking r = (2Ct)1/α, we have P[Xt ≤ r] ≥ 1/2, and
with this choice of r in (4.27) we obtain P[λx > t] ≥ εt−δ/α, for some ε > 0 and all t
sufficiently large. Since δ > β − α was arbitrary, the result follows.
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5 Proofs for Section 3

5.1 Overview

In this section we first prove our results from Section 3.2, from which the results
on the strip model given in Section 3.1 will follow. For our results from Section 3.2 on
the random walk Yt with a distinguished subset C of the state-space, we use two related
but different proof ideas. We prove Theorem 3.7 in Section 5.3 by an explicit use of the
embedded process Xt = Yσt , which observes the process at successive visits to C. We
give estimates on the tails of the increments of Xt given our assumptions on the tails
of the increments of Yt, and then apply the one-dimensional results of Section 2 to Xt;
a small additional amount of work is then needed to recover the result for Yt itself. In
contrast, in Section 5.2 we give the proofs of Theorems 3.8 and 3.9, which work directly
with the process Yt, but again make repeated use of the results from Section 2, not only
for analysing the random walk but for estimating the almost-sure growth rate of σn as
well. Finally, in Section 5.4, we derive the results on the strip model of Section 3.1.

5.2 Proofs of Theorems 3.8 and 3.9

We recall some notation introduced in Section 3.2. The stochastic process Yt has
state space S and increments Dt = Yt+1 − Yt. The successive hitting times of C ⊂ S are
σ0 = 0, σ1, σ2, . . ., and νn = σn+1 − σn. We write Gn = σ(Y0, . . . , Yn). To start this section
we give some preparatory results on the hitting times σn =

∑n−1
i=1 νi.

Lemma 5.1. Suppose that (C1) holds.

(i) Suppose that for some γ > 0 and C < ∞, E[νγn | Gσn ] ≤ C a.s. for all n. Then for
any ε > 0, a.s., for all but finitely many n, σn ≤ n(1/(γ∧1))+ε.

(ii) Suppose that for some γ ∈ (0, 1], y0 < ∞, and c > 0, for all y ≥ y0, P[νn ≥ y |
Gσn ] ≥ cy−γ a.s. for all n. Then for any ε > 0, a.s., for all but finitely many n,
σn ≥ n(1/γ)−ε.

Proof. For part (i), Markov’s inequality yields P[νn ≥ y | Gσn ] = O(y−γ), uniformly in n

and ω. Now apply Theorem 2.4 with Xt = σt, ∆t = ∆+
t = νt, Ft = Gσt , θ = γ ∧ 1, and

φ = 0. For part (ii), apply Theorem 2.6, noting that ∆−t = 0 a.s. since νt ≥ 0 a.s.

Denote the number of visits to C by time t by

N(t) := max{n ∈ Z+ : σn ≤ t}. (5.1)

An inversion of Lemma 5.1 yields the following result.

Lemma 5.2. Suppose that (C1) holds.

(i) Suppose that for some γ > 0 and C < ∞, E[νγn | Gσn ] ≤ C a.s. for all n. Then for
any ε > 0, a.s., for all but finitely many t, N(t) ≥ t(γ∧1)−ε.

(ii) Suppose that for some γ ∈ (0, 1], y0 <∞, and c > 0, for all y ≥ y0, P[νn ≥ y | Gσn ] ≥
cy−γ a.s. for all n. Then for any ε > 0, a.s., for all but finitely many t, N(t) ≤ tγ+ε.

Proof. Since σn <∞ a.s., we have N(t)→∞ as t→∞, a.s. Also note that, by definition
of N(t), σN(t) ≤ t but σN(t)+1 > t. Thus under the conditions of part (i) we have that for
any ε > 0, a.s., for all but finitely many t,

t < σN(t)+1 ≤ (N(t) + 1)
1
γ∧1+ε,

by Lemma 5.1(i), which yields part (i). On the other hand, under the conditions of part
(ii), for any ε > 0, a.s., for all but finitely many t,

t ≥ σN(t) ≥ N(t)(1/γ)−ε,

by Lemma 5.1(ii), which yields part (ii).
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Now we can prove Theorems 3.8 and 3.9, starting with the former.

Proof of Theorem 3.8. By (C3), for any ε > 0, there exists y0 <∞ such that, a.s., for all
y ≥ y0,

y−γ−ε ≤ P[νn ≥ y | Gσn ] ≤ y−γ+ε, (5.2)

uniformly in n. The upper bound in (5.2) in turn implies that, for p > 0, for any ε > 0,

E[νpn | Gσn ] =

∫ ∞
0

P[νn > y1/p | Gσn ]dy ≤ y0 +

∫ ∞
y0

y−(γ−ε)/pdy, a.s., (5.3)

which is bounded uniformly in n and ω provided p < γ − ε. First we prove the lower
bound for Yt. Recall the definition of N(t) from (5.1), and that σm → ∞ as m → ∞.
Since Yt = Y0 +

∑t−1
s=0Ds, we observe that

Yt ≥ Y0 +

N(t−1)∑
m=0

D+
σm −

t∑
s=0

D−s . (5.4)

We have from (3.4) that, for any ε > 0, there exists x0 <∞ such that, a.s., for all x ≥ x0,

x−α−ε ≤ P[D+
σn ≥ x | Gσn ] ≤ x−α+ε, (5.5)

uniformly in n. An application of Theorem 2.6 with Xt =
∑t−1
m=0D

+
σm and Ft = Gσt

(noting that, since σt−1 + 1 ≤ σt, Xt is then Ft-measurable, and ∆t = Xt+1 −Xt = D+
σt),

using the lower bound in (5.5), then implies that for any ε > 0, a.s., for all but finitely
many t,

∑t
m=1D

+
σm ≥ t(1/α)−ε. Together with Lemma 5.2(i) and (5.3), this implies that

for any ε > 0, a.s., for all but finitely many t,

N(t)∑
m=0

D+
σm ≥ t

(γ/α)−ε. (5.6)

On the other hand, condition (i) in Theorem 3.8 with Markov’s inequality implies that
P[D−t ≥ x | Gt] ≤ Cx−β , uniformly in t and ω. Then an application of Theorem 2.4 with
Xt =

∑t−1
s=0D

−
s (so that ∆t = D−t ), Ft = Gt, θ = β ∧ 1 and φ = 0 implies that for any

ε > 0, a.s., for all but finitely many t,

t∑
s=0

D−s ≤ t
1
β∧1+ε. (5.7)

Thus from (5.4) with (5.6) and (5.7), and the fact that α < γ(β ∧ 1), we obtain, for any
ε > 0, a.s., for all but finitely many t, Yt ≥ t(γ/α)−ε. Since ε > 0 was arbitrary,

lim inf
t→∞

log Yt
log t

≥ γ

α
, a.s.

Now we prove the upper bound for Yt. Observe that

Yt ≤ Y0 +

N(t)∑
m=0

D+
σm +

t∑
s=0

D+
s 1{Ys /∈ C}. (5.8)

Here we have from Lemma 5.2(ii) and the lower bound in (5.2) that, for any ε > 0, a.s.,
for all but finitely many t, N(t) ≤ tγ+ε. Moreover, an application of Theorem 2.4(i) with
Xt =

∑t−1
m=0D

+
σm (so ∆t = D+

σt), Ft = Gσt , θ = α − ε and φ = 0, using the upper bound
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in (5.5), implies that for any ε > 0, a.s., for all but finitely many t,
∑t
m=0D

+
σm ≤ t

(1/α)+ε.
Hence for any ε > 0, a.s., for all but finitely many t,

N(t)∑
m=0

D+
σm ≤ t

(γ/α)+ε. (5.9)

Another application of Theorem 2.4, this time with Xt =
∑t−1
s=0D

+
s 1{Ys /∈ C} (so ∆t =

D+
t 1{Yt /∈ C}), Ft = Gt, θ = β ∧ 1 and φ = 0, using condition (iii) in Theorem 3.8, implies

that for any ε > 0, a.s., for all but finitely many t,

t∑
s=0

D+
s 1{Ys /∈ C} ≤ t(1/(β∧1))+ε. (5.10)

Then from (5.8) with (5.9) and (5.10), using the fact that α < γ(β ∧ 1), we obtain, for
any ε > 0, a.s., for all but finitely many t, Yt ≤ t(γ/α)+ε. Since ε > 0 was arbitrary,

lim sup
t→∞

log Yt
log t

≤ γ

α
, a.s.

Combining this with the lim inf result obtained above completes the proof.

We finish this section with the proof of Theorem 3.9.

Proof of Theorem 3.9. Parts of this proof are similar to the proof of Theorem 3.8 above,
so we omit some details this time around. Again, (5.2) holds. Observe that

Yt ≥ Y0 −
N(t)∑
m=0

D−σm −
t∑

s=0

D−s 1{Ys /∈ C}. (5.11)

Similarly to the argument for (5.9) above, from Lemma 5.2(i) and Theorem 2.4, using
condition (i) in Theorem 3.9, we have that, for any ε > 0, a.s., for all but finitely many
t,
∑N(t)
m=0D

−
σm ≤ t

(γ/α)+ε. Also, similarly to the argument for (5.10) above, we have from
Theorem 2.4 with condition (ii) in Theorem 3.9 that, for any ε > 0, a.s., for all but finitely
many t,

∑t
s=0D

−
s 1{Ys /∈ C} ≤ t(1/β)+ε. Since α > γβ it follows from (5.11) that for any

ε > 0, a.s., for all but finitely many t, Yt ≥ −t(1/β)+ε.
Next we prove the upper bound for Yt. Observe that

Yt ≤ Y0 +

N(t)∑
m=0

D+
σm +

t∑
s=0

D+
s 1{Ys /∈ C} −

t−1∑
s=0

D−s 1{Ys /∈ C}. (5.12)

Similarly to the analogous term in (5.11), for any ε > 0, a.s., for all but finitely many
t,
∑N(t)
m=0D

+
σm ≤ t(γ/α)+ε. Yet another application of Theorem 2.4, using condition (iii)

in Theorem 3.9, yields, for any ε > 0, a.s., for all but finitely many t,
∑t
s=0D

+
s 1{Ys /∈

C} ≤ t
1

(β+δ)∧1
+ε. Since α > βγ, β < 1, and δ > 0, we may choose ε > 0 small enough so

that both of these upper bounds are oω(t(1/β)−ε). So, by (5.12), to complete the proof, it
remains to show that, for any ε > 0, a.s., for all but finitely many t,

t−1∑
s=0

D−s 1{Ys /∈ C} ≥ t(1/β)−ε. (5.13)

Let κ1, κ2, . . . be the successive (stopping) times at which Yt /∈ C, and letM(t) = max{m :

κm ≤ t}. Since γ ∈ (0, 1), we have from Lemma 5.2(ii) that N(t) = oω(t), a.s., so

M(t) > t/2 a.s., for all t sufficiently large. Then
∑t−1
s=0D

−
s 1{Ys /∈ C} ≥

∑M(t−1)
m=1 D−κm .

For this latter sum, Theorem 2.6 with condition (ii) in Theorem 3.9 shows that, for any
ε > 0, a.s., for all but finitely many t, Xt =

∑t−1
m=1D

−
κm ≥ t(1/β)−ε. Then the claim (5.13)

follows, using the a.s. lower bound on M(t).
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5.3 Proof of Theorem 3.7

For this section we take Xt = Yσt and Ft = Gσt . Thus Xt is the embedded process
obtained be observing Yt at those instants at which it is in the distinguished class C; Xt

is an (Ft)-adapted process on the state space C. As before, we write Dt := Yt+1 − Yt
and ∆t := Xt+1 −Xt for the increments of Yt and Xt, respectively. The next two results
derive properties of the increments ∆t of the embedded process Xt from conditions on
the increments Dt of the original process Yt. First we have an upper tail bound.

Lemma 5.3. Suppose that (C1) and (C2) hold. Suppose that for some C <∞ and some
β > 0, E[(D+

t )β | Gt] ≤ C a.s. for all t. Then there exists C ′ < ∞ such that for all x > 0

and all t, P[∆+
t ≥ x | Ft] ≤ C ′x−(β∧1) a.s.

Proof. For the duration of this proof, let Zs :=
∑σt+s−1
r=σt

D+
r for s ≥ 0, so that Z0 = 0,

Zs ≥ 0 and Yσt+s ≤ Zs + Yσt . Then for any s ≥ 0, by concavity,

E[Zβ∧1s+1 − Zβ∧1s | Gσt+s] ≤ E[(D+
σt+s)

β∧1 | Gσt+s] ≤ C, a.s.

Hence, by Lemma 4.3, for x > 0,

P

[
max

0≤s≤νt
Zβ∧1s ≥ x | Ft

]
≤ Cx−1E[νt | Ft] ≤ BCx−1, a.s., (5.14)

for all t, since, by (C2), E[νt | Ft] ≤ B. In particular, since ∆t = Yσt+νt − Yσt ≤ Zνt ,
(5.14) implies that P[(∆+

t )β∧1 ≥ x | Ft] = O(x−1), uniformly in t and ω.

Next we prove the following lower tail bound.

Lemma 5.4. Suppose that (C1) and (C2) hold. Suppose that for some c > 0, α > 0, and
x0 < ∞, for all x ≥ x0 and all t, P[D+

t ≥ x | Gt] ≥ cx−α a.s. on {Yt ∈ C}. Suppose also
that there exist C < ∞ and β > 0 with α < β ∧ 1 such that E[(D−t )β | Gt] ≤ C a.s. for
all t. Then there exist c′ > 0 and x1 < ∞ for which P[∆+

t ≥ x | Ft] ≥ c′x−α a.s. for all
x ≥ x1 and all t.

Proof. Recall that ∆t = Yσt+1
− Yσt =

∑νt−1
s=0 Dσt+s. Then ∆+

t ≥ D+
σt −

∑σt+νt−1
r=σt

D−r , so

P[∆+
t ≥ x | Ft] ≥ P[D+

σt ≥ 2x | Gσt ]− P

[
σt+νt−1∑
r=σt

D−r ≥ x | Gσt

]
= P[D+

σt ≥ 2x | Gσt ]−O(x−(β∧1)),

by the argument for (5.14) but with a change of sign.

Recall the definition of N(t) from (5.1).

Proof of Theorem 3.7. Condition (ii) of the theorem implies that for any ε > 0, there
exists x0 <∞ for which,

x−α−ε ≤ P[D+
t > x | Gt] ≤ x−α+ε, a.s., (5.15)

for all x ≥ x0 and all t. Using the lower bound in (5.15) and (C2), Lemma 5.4 implies
that, for any ε > 0, there exists x1 < ∞ such that P[∆+

t ≥ x | Ft] ≥ x−α−ε, a.s., for all
x ≥ x1 and all t. On the other hand, Lemma 5.3 with (C2) and the upper bound in (5.15)
(which shows that, for ε > 0, E[(D+

t )α−ε | Gt] is bounded uniformly in t and ω) implies
that, for any ε > 0, P[∆+

t ≥ x | Ft] = O(x−α+ε) a.s., uniformly in t and ω. Moreover,
another application of Lemma 5.3, now using condition (i) of the theorem as well as
(C2), yields P[∆−t ≥ x | Ft] = O(x−(β∧1)) a.s., uniformly in t and ω, so that, for ε > 0,
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E[(∆−t )(β∧1)−ε | Ft] is bounded uniformly in t and ω. With these tail and moment bounds,
since α < β ∧ 1, we obtain from Theorem 2.4 that for any ε > 0, Xt = Oω(t(1/α)+ε), a.s.,
and we obtain from Theorem 2.6 that for any ε > 0, a.s., for all but finitely many t,
Xt ≥ t(1/α)−ε. Thus, since ε > 0 was arbitrary,

lim
t→∞

logXt

log t
=

1

α
, a.s. (5.16)

We need to show that the same limit holds for Yt instead of Xt. Note that σN(t) ≤ t <

σN(t)+1. If t = σN(t), we have

Yt1{Yt ∈ C} = XN(t) = (N(t))(1/α)+oω(1), a.s., (5.17)

by (5.16). On the other hand, for σN(t) < t < σN(t)+1 we have the estimate

|Yt − YσN(t)+1
|1{Yt /∈ C} ≤

σN(t)+1−1∑
s=σN(t)+1

|Ds| =
σN(t)+1−1∑
s=σN(t)

|Ds|1{Ys /∈ C}.

It follows that

max
0≤s≤t

(
|Ys −XN(s)+1|1{Ys /∈ C}

)
≤ max

0≤n≤N(t)
max

σn≤s<σn+1

|Ys − YσN(s)+1
|1{Ys /∈ C}

≤
σN(t)+1∑
s=0

|Ds|1{Ys /∈ C} ≤
σt+1∑
s=0

|Ds|1{Ys /∈ C},

using the trivial bound N(t) ≤ t for the final inequality. By conditions (i) and (iii) of the
theorem, E[|Dt|β | Gt] ≤ C on {Yt /∈ C}, a.s., so Theorem 2.4 yields, for any ε > 0,

σt∑
s=0

|Ds|1{Ys /∈ C} ≤ (σt)
1
β∧1+ε,

where, for any ε > 0, σt = Oω(t1+ε), by Lemma 5.1(i). Thus we obtain, for any ε > 0,

max
0≤s≤t

(
|Ys −XN(s)+1|1{Ys /∈ C}

)
= Oω(t

1
β∧1+ε),

which is oω(t(1/α)−ε) for small enough ε, since α < β ∧ 1. Hence

Yt1{Yt /∈ C} = XN(t)+1 + oω(t(1/α)−ε) = (N(t) + 1)(1/α)+oω(1) + oω(t(1/α)−ε), a.s., (5.18)

by (5.16). The result of the theorem now follows from (5.17) and (5.18) provided we can
show that N(t) = t1+oω(1), a.s. The upper bound here is trivial since N(t) ≤ t, and the
lower bound follows from Lemma 5.2(i) with (C2). This completes the proof.

5.4 Proofs for heavy-tailed random walks on strips

The model of Section 3.2 generalizes the strip model as follows. Set Yt = Vt + 1
2+Ut

.
Then (Ut, Vt) can be recovered from Yt via Vt = bYtc and Ut = (Yt − bYtc)−1 − 2. In this
case, the state-space S of Yt is a subset of the rationals Q; the distinguished subset C
corresponds to Ut = 0, i.e., C = 1

2 + Z, a translate of Z. The increments of Yt have the
same tail behaviour as the increments of Vt.

Thus Theorems 3.2, 3.3, and 3.4 follow immediately from Theorems 3.7, 3.8, and
3.9, respectively. It remains to prove Proposition 3.6.
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Proof of Proposition 3.6. Proposition 1 of [2, p. 957] implies that E[νγ ] < ∞, which
implies the upper bound in (3.3) by Markov’s inequality. On the other hand, for the
lower tail bound we appeal to a result of [1]. For p > 0, Taylor’s formula implies that

E[Upt+1 − U
p
t | Ut = x]

= pxp−1
(
E[Ut+1 − Ut | Ut = x] +

p− 1

2x
E[(Ut+1 − Ut)2 | Ut = x] +O(x−2)

)
,

using the uniform bound on Ut+1 − Ut for the error term. By our assumptions on the
moments of Ut+1 − Ut, we have

E[Upt+1 − U
p
t | Ut = x] = pxp−2σ2

((
1

2
− γ
)

+
p− 1

2
+ o(1)

)
≥ 0,

for all x sufficiently large, provided p > 2γ. So Corollary 1 of [1, p. 119] implies that for
any ε > 0, P[ν ≥ t] ≥ t−γ−ε, for all t sufficiently large.

6 Appendix

In this appendix we make some additional remarks concerning the nature of our
conditions (2.3), (2.2), and (2.6), and how they relate to the formulation of the results
of Erickson [8] and Kesten and Maller [19] on sums of i.i.d. random variables.

For any nonnegative random variable Z with distribution function F (z) := P[Z ≤ z],

E[Z1{Z ≤ z}] =

∫ z

0

ydF (y)

=

∫ ∞
0

P[Z1{Z ≤ z} > y]dy =

∫ z

0

P[y < Z ≤ z]dy

=

∫ z

0

P[Z > y]dy − zP[Z > z]. (6.1)

Our condition (2.3) concerns E[∆+
t 1{∆+

t ≤ x} | Ft]; conditions in [8,19] are stated
in terms of the analogue in the i.i.d. case of

∫ x
0
P[∆+

t > y | Ft]dy, which is denoted
m+(x) by Erickson [8, p. 372] and A+(y) by Kesten and Maller [19, p. 3]. It follows from
(6.1) that, for x > 0,

∫ x
0
P[∆+

t > y | Ft]dy ≥ E[∆+
t 1{∆+

t ≤ x} | Ft], so (2.3) implies that∫ x
0
P[∆+

t > y | Ft]dy ≥ cx1−α a.s. for x sufficiently large.

On the other hand, (2.2) together with Markov’s inequality implies that
∫ x
0
P[∆−t ≥

y | Ft]dy = O(x1−β); here
∫ x
0
P[∆−t ≥ y | Ft]dy is the analogue in our more general

setting of Erickson’s m−(x) [8, p. 372] and Kesten and Maller’s A−(x) [19, p. 3].

We state one result on the relationship between conditions (2.3) and (2.6), using the
concept of slow variation (see e.g. [27, pp. 354–356]).

Lemma 6.1. Suppose that for some α ∈ (0, 1) the nonnegative random variable Z

satisfies P[Z > z] = z−αL(z) for some slowly varying function L. Then E[Z1{Z ≤ z}] ∼
α

1−αz
1−αL(z) as z →∞.

Proof. Karamata’s theorem (see e.g. [27, p. 356]) implies that∫ z

0

P[Z > y]dy =

∫ z

0

y−αL(y)dy ∼ 1

1− α
z1−αL(z),

as z →∞. The result follows from (6.1).
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