Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Influence of dipole-dipole correlations on the stability of the biaxial nematic phase in the model bent-core liquid crystal

Osipov, Mikhail and Pajak, Grzegorz (2012) Influence of dipole-dipole correlations on the stability of the biaxial nematic phase in the model bent-core liquid crystal. Journal of Physics: Condensed Matter, 24 (14). ISSN 0953-8984

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A molecular theory of biaxial nematic ordering in the system of bent-core molecules has been developed in the two-particle cluster approximation which enables one to take into account short-range polar correlations determined by both electrostatic dipole-dipole interaction and polar molecular shape. All orientational order parameters and short-range correlation functions are calculated numerically as functions of temperature in the uniaxial and in the biaxial nematic phases, and the results are compared with the ones obtained in the mean-field approximation and in the cluster approximation but without taking into consideration the dipole-dipole interaction. It is shown that short-range polar correlations and, in particular, the dipole-dipole correlations dramatically increase the temperature of the transition into the biaxial nematic phase and enhancing its stability range. The results are also very sensitive to the value of the opening angle of a model bent-core molecule.