Picture of Open Access badges

Discover Open Access research at Strathprints

It's International Open Access Week, 24-30 October 2016. This year's theme is "Open in Action" and is all about taking meaningful steps towards opening up research and scholarship. The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Explore recent world leading Open Access research content by University of Strathclyde researchers and see how Strathclyde researchers are committing to putting "Open in Action".


Image: h_pampel, CC-BY

The communicability distance in graphs

Estrada, Ernesto (2012) The communicability distance in graphs. Linear Algebra and Its Applications, 436 (11). pp. 4317-4328. ISSN 0024-3795

Full text not available in this repository. (Request a copy from the Strathclyde author)


Let G be a simple connected graph with adjacency matrix A. The communicabilityGpq between two nodes p and q of the graph is defined as the pq-entry of G=exp(A). We prove here that ξp,q=(Gpp+Gqq-2Gpq)1/2 is a Euclidean distance and give expressions for it in paths, cycles, stars and complete graphs with n nodes. The sum of all communicabilitydistances in a graph is introduced as a new graph invariant ϒ(G). We compare this index with the Wiener and Kirchhoff indices of graphs and conjecture about the graphs with maximum and minimum values of this index.