Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

The communicability distance in graphs

Estrada, Ernesto (2012) The communicability distance in graphs. Linear Algebra and Its Applications, 436 (11). pp. 4317-4328. ISSN 0024-3795

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Let G be a simple connected graph with adjacency matrix A. The communicabilityGpq between two nodes p and q of the graph is defined as the pq-entry of G=exp(A). We prove here that ξp,q=(Gpp+Gqq-2Gpq)1/2 is a Euclidean distance and give expressions for it in paths, cycles, stars and complete graphs with n nodes. The sum of all communicabilitydistances in a graph is introduced as a new graph invariant ϒ(G). We compare this index with the Wiener and Kirchhoff indices of graphs and conjecture about the graphs with maximum and minimum values of this index.