Picture of a sphere with binary code

Making Strathclyde research discoverable to the world...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. It exposes Strathclyde's world leading Open Access research to many of the world's leading resource discovery tools, and from there onto the screens of researchers around the world.

Explore Strathclyde Open Access research content

The communicability distance in graphs

Estrada, Ernesto (2012) The communicability distance in graphs. Linear Algebra and Its Applications, 436 (11). pp. 4317-4328. ISSN 0024-3795

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Let G be a simple connected graph with adjacency matrix A. The communicabilityGpq between two nodes p and q of the graph is defined as the pq-entry of G=exp(A). We prove here that ξp,q=(Gpp+Gqq-2Gpq)1/2 is a Euclidean distance and give expressions for it in paths, cycles, stars and complete graphs with n nodes. The sum of all communicabilitydistances in a graph is introduced as a new graph invariant ϒ(G). We compare this index with the Wiener and Kirchhoff indices of graphs and conjecture about the graphs with maximum and minimum values of this index.