Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

The communicability distance in graphs

Estrada, Ernesto (2012) The communicability distance in graphs. Linear Algebra and Its Applications, 436 (11). pp. 4317-4328. ISSN 0024-3795

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Let G be a simple connected graph with adjacency matrix A. The communicabilityGpq between two nodes p and q of the graph is defined as the pq-entry of G=exp(A). We prove here that ξp,q=(Gpp+Gqq-2Gpq)1/2 is a Euclidean distance and give expressions for it in paths, cycles, stars and complete graphs with n nodes. The sum of all communicabilitydistances in a graph is introduced as a new graph invariant ϒ(G). We compare this index with the Wiener and Kirchhoff indices of graphs and conjecture about the graphs with maximum and minimum values of this index.