Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Bombesin stimulates the rapid activation of phospholipase A2-catalyzed phosphatidylcholine hydrolysis in Swiss 3T3 cells

Currie, S and Smith, G L and Crichton, C A and Jackson, C G and Hallam, C and Wakelam, M J (1992) Bombesin stimulates the rapid activation of phospholipase A2-catalyzed phosphatidylcholine hydrolysis in Swiss 3T3 cells. Journal of Biological Chemistry, 267 (9). pp. 6056-6062. ISSN 1083-351X

Full text not available in this repository. (Request a copy from the Strathclyde author)


In Swiss 3T3 fibroblasts bombesin stimulated the release of arachidonic acid in a time- and dose-dependent manner. Arachidonate levels were significantly elevated after only a 2-s stimulation with the agonist. Furthermore, by measuring the arachidonate content of cellular phospholipids after cell activation, it was shown that there was selective depletion from phosphatidylcholine over the same time course. The corresponding production of lysophosphatidylcholine suggested the involvement of a phosphatidylcholine-specific phospholipase A2. Initial arachidonic acid release was not dependent on the presence of extracellular calcium, not activated by treatment of the cells with thapsigargin, and was unaffected by down-regulation of protein kinase C activity, or by treatment of the cells with the protein kinase C inhibitor staurosporine. These data strongly suggest that occupation of the bombesin receptor is closely coupled to activation of phospholipase A2 which results in the rapid release of arachidonic acid from phosphatidylcholine.