Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

AC fault ride-through capability of a VSC-HVDC transmission systems

Adam, Grain Philip and Finney, Stephen and Williams, Barry (2010) AC fault ride-through capability of a VSC-HVDC transmission systems. In: Proceedings of the 2010 IEEE Energy Conversion Congress and Exposition (ECCE). IEEE, 3739 - 3745. ISBN 978-1-4244-5286-6

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

This paper presents a recovery strategy that enables DC transmission systems based on voltage source converters to ride-through different ac faults with minimum current and voltage stresses on the converter switching devices. The proposed recovery strategy eliminates the trapped energy in the dc link during ac faults; as a result the rise in the dc link voltage is prevented. This may eliminate the need for the dc chopper in the dc link, as proposed in the literature, to dissipate the trapped energy. To demonstrate the effectiveness of the recovery strategy, several fault conditions are considered, including, symmetrical and asymmetrical faults. The proposed recovery strategy improves the resiliency of the VSC-HVDC transmission system to different ac faults, which can be summarized as follows: limited current contribution to the fault and limited current and voltage stress on the switching devices as the rise in the dc link voltage is significantly reduced or prevented.