Picture of scraped petri dish

Scrape below the surface of Strathprints...

Explore world class Open Access research by researchers at the University of Strathclyde, a leading technological university.

Explore

Grid integration of offshore wind farm using multi-terminal DC transmission system (MTDC)

Kalcon, Giddani Osman Addalan and Adam, Grain Philip and Anaya-Lara, Olimpo and Lo, Kwok (2010) Grid integration of offshore wind farm using multi-terminal DC transmission system (MTDC). In: 5th IET International Conference on Power Electronics, Machines and Drives (PEMD 2010). IET. ISBN 978 1 84919 231 6

[img]
Preview
Text (Giddan-etal-PEMD-2010-Grid-integration-of-offshore-wind-farm-multi-terminal)
Giddan_etal_PEMD_2010_Grid_integration_of_offshore_wind_farm_multi_terminal.pdf - Submitted Version

Download (289kB) | Preview

Abstract

This paper discusses the control flexibility and fault ride- through capability of the bi-polar multi-terminal DC transmission system based on voltage source converters used for integration of large-scale offshore wind farms. Issues such as voltage support and short-term frequency stabilization of the AC network utilizing the stored energy in the wind turbine inertia and DC link capacitors are discussed. Regarding control flexibility, two aspects are presented: power sharing between the grid-side converters by any ratio, and provision of an alternative path for the power flow in case of a permanent DC fault or loss of one grid-side converter. In this investigation, the wind farms are based on fixed-speed wind generators, while the converters are modelled as a neutral-point clamped converter using the universal bridge. The investigation was conducted in Matlab/Simulink.