Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

First principles calculation of the intrinsic aqueous solubility of crystalline druglike molecules

Palmer, David and McDonagh, James L and Mitchell, John B.O. and van Mourik, Tanja and Fedorov, Maxim (2012) First principles calculation of the intrinsic aqueous solubility of crystalline druglike molecules. Journal of Chemical Theory and Computation, 8 (9). 3322–3337. ISSN 1549-9618

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We demonstrate that the intrinsic aqueous solubility of crystalline druglike molecules can be estimated with reasonable accuracy from sublimation free energies calculated using crystal lattice simulations and hydration free energies calculated using the 3D Reference Interaction Site Model (3DRISM) of the Integral Equation Theory of Molecular Liquids (IET). The solubilities of 25 crystalline druglike molecules taken from different chemical classes are predicted by the model with R = 0.85 and RMSE = 1.45 log10 S units, which is significantly more accurate than results obtained using implicit continuum solvent models. The method is not directly parameterized against experimental solubility data and it offers a full computational characterization of the thermodynamics of transfer of the drug molecule from crystal phase to gas phase to dilute aqueous solution.