Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Estimation of mutual information using copula density function

Zeng, X. and Durrani, T. S. (2011) Estimation of mutual information using copula density function. Electronics Letters, 47 (8). pp. 493-494. ISSN 0013-5194

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The dependence between random variables may be measured by mutual information. However, the estimation of mutual information is difficult since the estimation of the joint probability density function (PDF) of non-Gaussian distributed data is a hard problem. Copulas offer a natural approach for estimating mutual information, since the joint probability density function of random variables can be expressed as the product of the associated copula density function and marginal PDFs. The experiment demonstrates that the proposed copulas-based mutual information is much more accurate than conventional methods such as the joint histogram and Parzen window based mutual information that are widely used in image processing.