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Abstract - In this paper, we introduce a polyphase implementation 
and design of an oversampled K-channel generalized DFT (GDFT) fil- 
ter bank, which can be employed for subband adaptive filtering, and 
therefore is required to have a low aliasing level in the subband sig- 
nals. A polyphase structure is derived which can be factorized into a 
real valued polyphase network and a GDFT modulation. For the latter, 
an FFT realization may be used, yielding a very inexpensive polyphase 
implementation for arbitrary integer decimation ratios N 5 K. We also 
present an analysis underlining the efficiency of complex valued subband 
processing. The design of the filter bank is completely based on the 
prototype filter and solved using a fast converging iterative least squares 
method, for which we give examples. The design specifications closely 
correspond with performance limits of subband adaptive filtering, which 
are under-pinned by simulation results. 

INTRODUCTION 
Subband adaptive filt,er (SAF) systems, as shown in Fig. 1 for a system 

identification setup, are widely used for problems like acoustic echo cancella- 
tion (AEC), where an adaptive system is required to identify very long impulse 
respo~ises, which becomes viable due to decreased complexity by processing in 
decirriat,ed subbands. However, tJhe case of critical decimation, where the dec- 
imation ratio N equals t,he number of uniform subbands K ,  requires either 
cross-t,erms at, least between adjacent, frequency bands [3], which compen- 
sates for the informatlion loss in the region of spectral overlap, or gap filter 
banks [17, 121, which introduces spect,ral loss that may not be acceptable. 

Oversampled SAF syst,enis can be either real or complex valued. Real 
valued bandpass signals have to be modulated into the baseband prior to 
decirnat,ion by, for example, single sideband modulation (SSB,[I, 14]), or their 
bandwidth and deciniation ratio has to be chosen in accordance with the 
sanipling theorem, leading to non-uniform filter banks [I], 51. In contrast, 
the decimation of complex valued bandpass signals with any integer factor 
N < K is straight,forward. 
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Fig. 1: Subband adaptive filter structure in a system identification setup. 

In this paper, we will focus on generalized DFT filter banks [l], which 
perform a particular type of complex valued subband decomposition. GDFT 
filter banks arise from complex modulation of a prototype filter, and, as will 
be derived, can be very efficiently realized using for generally non-integer over- 
sampling ratios K / N .  This will prove an often stated misconception wrong 
that polyphase implementations are only viable for integer oversampling ra- 
tios (OSR) g E Z [l, 81, while otherwise frequency domain realizations of the 
filter banks are preferred [lo]. This is particularly important, since subband 
processing shows its highest reduction in computational complexity for OSRs 
close to  1. 

Further, we will adopt an iterative least squares method method [9, 61 
to design prototype lowpass filters for GDFT modulated oversampled filter 
banks appropriate for SAF systems. The error performance of the produced 
SAFs can be linked to the design criteria of this prototype filter [15]. Finally, 
we will present some prototype designs, which will be used in adaptive system 
identification examples performed in subbands. 

COMPLEX SUBBAND DECOMPOSITION BY GDFT 
FILTER BANKS 
GDFT Modulation. A general structure of a K channel filter bank with 
decimation by a factor N 5 K is shown in Fig. 2. The analysis filters hk[n] 
are derived from a real valued lowpass prototype FIR filter p[n] of even length 
L, by a generalized discrete Fourier transform (GDFT) , 

hk[n] = e j g ( k + k o  )(n+no) .p[nI, k , n  E N, (1) 
which can be closely linked to a DCT-IV modulation used for cosine modu- 
lated pseudo-QMF K/2  channel filter banks [13] by a real operation performed 
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Fig. 2: Analysis and synt,hesis branch of a K-channel filter bank with sub- 
bands decimated by N .  

on the complex bandpass filters hk [n]. 
The term generalized DFT [I] st,ems from offsets ko and no introduced into 

t,he frequency and time indices in the modulation term of (1). Linear phase 
property of the modulated filters can be ensured by choosing a linear phase 
prototype filt,er p [ n ]  and a transform symmetric to  ( L p -  1)/2 by appropriately 
setting n o .  A frequency offset ko = shifts the bandpass characteristics of 
the filters h , k [ n ]  and yields the frequency range [O; 7r3 to  be covered by exactly 
K / 2  subbands for an even K ,  while the remaining subbands are complex 
conjugate versions and therefore redundant to  process, if the input signal to 
the filter bank is real. 

Thc synthesis filters gk[?z] can be obtained by time reversion of the analysis 
filter, i.e. g k [ n ]  = hk[n.] = hE[L,-7~+1]. Thus, all filters can be derived from 
one single protot,ype p[?z], which has to be designed appropriately. 

Efficient Filter Bank Implementation 
For efficient iniplementatiori of the oversampled GDFT filter bank, we em- 

ploy polyphase represent ation of the analysis and synthesis filters. Generally, 
savings due to  a polypliase implementation are gained in two steps: firstly, the 
calculation of decimated samples will be suppressed; secondly, computations 
common to different branches of the analysis or synthesis bank are combined. 

Polyphase Representation. With the kth analysis filter written in 
terms of its N polyphase components H k l J ( z ) ,  J = O(1)N - 1, 

N - l  

a niatrix H,(z) with polynomial ent,ries can be created for the analysis filter . ,  
bank: 

H(z) = (3 )  



With a polyphase decomposition of the input signal x[n], 

N-1 

X ( z )  = z - jX&N) , 
j = O  

analogue to  ( 2 ) ,  and 

(4) 

the analysis bank operation denotes as 

Y(z)  = H(z) . X(Z) , (6) 

where y ( z )  E Ccr' contains the K subband signals. 
If the polyphase matrix H(z) is paraunitary, the synthesis of the subband 

signals may be performed by &(z)  = H(z).Y(z),  where H(z) is the hermitian 
of H( z )  with reversed polynomial entries. The reclonstructed fullband signal 
2[n] is given in polyphase representation by &z) .  Hf we combine analysis and 
synthesis, i.e. &) = H(z).H(z).X(z), perfect reconstructed is characterized 
by H(z) . H(z) = z - ~ P + ~ c I ,  c E C/{O}, i.e. H(z) has to be paraunitary [2]. 

For real input signals 2[n],  an efficient implementation omits K/2  sub- 
bands, 

- X ( z )  = Re { HT(z) . l',(z)} = Re { H,(z) . H T ( z )  . X ( z ) }  , (7) 

where the subscript T refers to a reduced matrix representations including 
only the upper K/2 rows of H(z). 

Polyphase Factorization. Let, M be the least, common multiple (lcm) 
of the periodicity of the transform in (l), 2K, and the decimation ratio N ,  
M = lcm(2K, N ) ,  with J ,  L E Z. To exploit common 
calculations between filters, the polyphase components of the analysis filters 
H(z) can be written in terms of the M polyphase components of the prototype 
filter ~ ( 2 )  = z -mpTn(zM) ,  

M = J.2K = L . N ,  

L-1 

Hkln(Z)  2-l ' t k , l N + n  ' f iN+n(zL) .  (8) 
1=0 

If the periodicity 2K of the transform coefficients t k ,n  is considered, it is 
possible to formulate a dense matrix notation 

H T ( ~ )  = TGDFT, ,  ' p(z)  (9) 

analogue to [2], with the upper half of a GDFT matrix TGDFT,, E C K / 2 x 2 K  
and a generally sparse matrix P(z)  E IR;EfxN with M non-zero polynomial 
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The GDFT transform matrix TGI)FT,~ in (9) can be further factorized to 
yield 

TC:DFT,~ = Di . TDFT,~ . [ I K  I K ]  . D2, (11) 

where D1 = eJSk7’@ . I K p  a.pplies a phase correction and D2 E @ 2 K x 2 K  is 
a diagonal rriatrix with elements eJWko(7L-n@) ,  n = 0(1)2K - 1, introduces 
the required frequency offset. The representation in (11) allows savings, as 
T D F , ~ , ~  E @K12xK consist,s of the upper K/2 rows of a K-point DFT matrix 
with entries c J % ~ ’ ~ ,  which can be implemented using standard FFT algo- 
rithms. 

Computational Complexity. Using this polyphase decomposition and 
factorization to efficiently implement an analysis bank operation, the signal 
is processed by a real valued polyphase network, P(z),  followed by a complex 
transforniation. On the synthesis side, the subband signals are rotated by 
il_ transform, and only their real part again fed into a polyphase network 
P(z) .  Recording roniputations, both operations result in a computational 
complexity of 

(12) 
1 
N (?bank 1 - (4h’ log, K + 6K + Lp)  

real niiiltiplications per fullbarid sample. 
Extensions. A fnrther reduction compared to (12) can be obtained by a 

modification of the prototype filter [16]. This reduces the periodicity of the 
GDFT transform to K ,  thus potentially decreasing the number of polyphase 
coniponents in P ( z )  by a factor 2, and saves 2K/N multiplications over (12) 
in the transform evaluation. 

Complex Vs Real Valued Subband Processing 
The rat,io of computat,ional complexity between adaptive filtering with 

real and complex valued subband signals for order O(Lb) algorithms can be 
derived as 
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Fig. 3: Required frequency re- 
sponse of a real valued prototype 
filter p [ n ]  for a K/2 channel over- 
sampled modulated GDFT filter 
bank with decimation by N .  

where L ,  is the length of an adaptive filter. Note that the complex case 
effectively appears with a doubled decimation ratio, resulting in shorter filters 
and slower update, but requires 4 real multiplications for a complex one. Thus 
in terms of processing load, order O(L,) algorithms like LMS and NLMS have 
same computational complexity for complex and real valued implementations, 
while for quadratic dependencies ( i  = 2) like thie RLS the computational 
burden can be halved by going complex. 

Complex subband processing also doubles the range of possible decimation 
ratios to  choose from N 3 N 5 K over real valued methods like SSB [l] or 
non-uniform filter banks [SI. 

PROTOTYPE DESIGN 
This section discusses two requirements of the filter bank design, stopband 

attenuation and perfect reconstruction, which will both be expressed in terms 
of the prototype filter. Based on this, an iteralive least-squares design is 
presented. 

Stopband Energy. The frequency response of a prototype filtti p[n]  for 
a K-channel GDFT bank with decimation by N is shown in Fig. 3. Every 
frequency of the input signal in the interval [7r/N; 7r] will be aliased into the 
baseband after filtering and decimation, and cause a distortion of the subband 
signal, which can be modelled as additive noise, motivating an SNR measure 
for white Gaussian input signals [15]: 

The denominator of (14) forms a measure of the stopband energy. It can be 
numerically approximated using the Eigenfilter method [13], which evaluates 
the real part of the frequency response in the stopband 

Re{P(ejQ)} = TDCT . p (15) 

at  discrete frequencies am, m = l(1)M by multiplying the coefficient vector 
of the prototype, p E E X L ,  , to a DCT matrix TDCT E E X M x L ,  with entries 
t,,,,, = cos(n. fIm),  n = O(l)L, - 1. 
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Symmetry of p is enforced by introducing a permutation matrix S1 = 
[IL,12, J L P l 2 ] ,  where I and J are identity and the reverse identity matrices 
and b = ST . p, yielding 

Re{P(eJL)} = TDCT . SIST. p = TDCT . S1 . b. (16) 

Power Complementary Condition. If aliasing is sufficiently suppressed, 
time-invariance of the input-output behaviour of the filter bank system in 
Fig. 2 is ensured and the near PR condition reduces to the requirement of 
power complementarity 15, 131, 

Exploiting the modulation of the passband filters Hk ( z ) ,  this requirement is 
equivalent to  demanding 

where Pk(z) are the K polyphase components of the prototype filter P ( z )  
[13]. If the summands on the left hand side are implemented in the time 
domain by multiplication of a convolutional matrix Pk E R(2LpIK-1)x(LplK) 
with a vector pk E R(LplKxl)  containing the elements of the kth polyphase 
filter of p [ n ] ,  (18) becomes 

Po 

[POP1 . . . P K - ~ ] .  1 p1 J = VS2 . p = VSzS1 . b + ' [ I!] (19) - 
V PK--1 - - d 

V 

with a suitable permutation matrix S2 E N L p x L p  that maps the coefficient 
vector p onto the polyphase vector v = S2p. 

If the subband adaptive filter is free of any other disturbances, the perfect 
reconstruction error (PRE) 

PRE = llVS2 . p - d11; (20) 

gives a limit measure of the achievable accuracy of the equivalent fullband 
model at the WienerlHopf solution [15]. 

Iterative Least Squares Design. To fulfill power complementarity and 
minimize stopband energy, a least-squares problem 

has to  be solved, where y allows a weighting 
The minimization can be performed iteratively 

between both design criteria. 
[9, 61, solving at each iteration 
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Prototype Design 
Y PRE SNR 
0 -54.0821 54.9 
30 -34.6191 65.2 

normalized frequency i pi 

Simulation Results 
Ilw-sll; a;d/a:, 
-54.0153 54.0 
-34.6143 66.2 

I 60 r-18.0016 i 77.8 ii -18.0010 ~ETI 

Tab. 1: first three columns: weighting of design criteria and achieved measures 
according to (20) and (14); right columns: final equivalent fullband model 
error and reduction in error power for RLS adaptive identification of a delay 
(all quantities in [dB]). 

where a previous solution b k - 1  is substituted to achieve a quadratic approxi- 
mation of (21). The resulting problem (22) can be easily solved using standard 
linear algebraic tools [4]. The iteration is stopped when the change from b k - 1  

to b k  is below a certain threshold. 
Additionally, a diagonal weighting matrix A, in (22) can be included to 

improve the stopband attenuation towards the band-edge. Furthermore, a 
relaxation can be introduced to solve for an intermediate solution bl, at step 
IC, from which the final solution is obtained by b k  = ab; + (1 - a ) b k - 1 ,  €or 
Q < a < l .  

RESULTS 
Design Examples. Fig. 4 shows two prototype filters obtained using the 
above iterative LS design. The starting coefficients bo are calculated by a 
remez filter design, and for a relaxation a = 0.5 the discussed LS method 
requires 11 iterations to converge in 8.44s CPU time on a Sparc20 workstation. 
The final PRE and SNR values of the design are llisted in Tab. 1. 

179 



I ! I I 6 I I 
0 0 1  0 2  0 3  0 4  0 5  0 6  07 0 8  0 9  t 

"Ormalllea treqYency I P' 

Fig. 5: PSD of desired signal and final error signal; dashed vertical lines 
indicate the band edges. 

Subband Adaptive Filtering Simulations. Using the prototype filters 
designed in Tab. 1, adaptive system identification of a white Gaussian noise 
excited delay was performed in subbands. The error terms after convergence 
of the adaptive filters using the RLS algorithm [7] are also shown in Tab. 1 
and closely agree with the properties calculated from the prototype design. 
Using the prototype for y = OdB, Fig. 5 shows simulation results employing 
an NLMS algorithm for adaptive identification of an unknown system with 
several dominant poles. Besides insufficient convergence at  the band edges, 
and residual peaks and a raised error power spectrum around the positions 
of the poles, one can clearly see the aliased peaks of the desired signal, which 
limit adaptation. The achieved reduction in error power is 52.92dB, while the 
12 distance of the reconstructed equivalent fullband response, w [ n ] ,  from to 
the unknown system, ~ [ n ] ,  is -50.43dB, well matching the design measures in 
Tab. 1. 

CONCLUSIONS 
We have shown that GDFT filter banks can enable highly efficient sub- 

band adaptive filter schemes, by extending the polyphase realization of the 
filter banks to  the case of general integer decimation ratios, and by the very 
nature of complex subband decompositions of real valued input signals. Fur- 
thermore, based on the prototype filter, a fast converging design method has 
been discussed, which minimizes two criteria limiting the performance of a 
subband adaptive system. The appeal is that these criteria provide conve- 
nient, tools to design filter banks fulfilling pre-specified, application dependent 
performance requirements. For applications like acoustic echo control, where 
the adaptation error is the most important issue, the banks can be designed 
to  be just good (and short) enough to satisfy relaxed constraints on the model 
error. 
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