Strathprints logo
Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Evidence-based robust design of deflection actions for near Earth objects

Zuiani, Federico and Vasile, Massimiliano and Gibbings, Alison (2012) Evidence-based robust design of deflection actions for near Earth objects. Celestial Mechanics and Dynamical Astronomy, 114 (1-2). pp. 107-136. ISSN 0923-2958

[img] PDF
Vasile_M_Pure_Evidence_based_robust_design_of_deflection_actions_for_near_Earth_objects_Jul_2012.pdf - Draft Version

Download (997kB)

Abstract

This paper presents a novel approach to the robust design of deflection actions for Near Earth Objects (NEO). In particular, the case of deflection by means of Solar-pumped Laser ablation is studied here in detail. The basic idea behind Laser ablation is that of inducing a sublimation of the NEO surface, which produces a low thrust thereby slowly deviating the asteroid from its initial Earth threatening trajectory. This work investigates the integrated design of the Space-based Laser system and the deflection action generated by laser ablation under uncertainty. The integrated design is formulated as a multi-objective optimisation problem in which the deviation is maximised and the total system mass is minimised. Both the model for the estimation of the thrust produced by surface laser ablation and the spacecraft system model are assumed to be affected by epistemic uncertainties (partial or complete lack of knowledge). Evidence Theory is used to quantify these uncertainties and introduce them in the optimisation process. The propagation of the trajectory of the NEO under the laser-ablation action is performed with a novel approach based on an approximated analytical solution of Gauss’ Variational Equations. An example of design of the deflection of asteroid Apophis with a swarm of spacecraft is presented.

Item type: Article
ID code: 40474
Keywords: robust design optimisation, evidence theory, analytical low-thrust formulas, perturbative expansions, asteroid deflection, Mechanical engineering and machinery, Motor vehicles. Aeronautics. Astronautics, Aerospace Engineering, Space and Planetary Science, Control and Systems Engineering
Subjects: Technology > Mechanical engineering and machinery
Technology > Motor vehicles. Aeronautics. Astronautics
Department: Faculty of Engineering > Mechanical and Aerospace Engineering
Technology and Innovation Centre > Advanced Engineering and Manufacturing
Depositing user: Pure Administrator
Date Deposited: 18 Jul 2012 14:20
Last modified: 07 Aug 2015 17:09
Related URLs:
URI: http://strathprints.strath.ac.uk/id/eprint/40474

Actions (login required)

View Item View Item