Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Evidence-based robust design of deflection actions for near Earth objects

Zuiani, Federico and Vasile, Massimiliano and Gibbings, Alison (2012) Evidence-based robust design of deflection actions for near Earth objects. Celestial Mechanics and Dynamical Astronomy, 114 (1-2). pp. 107-136. ISSN 0923-2958

[img] PDF
Vasile_M_Pure_Evidence_based_robust_design_of_deflection_actions_for_near_Earth_objects_Jul_2012.pdf - Preprint

Download (997kB)

Abstract

This paper presents a novel approach to the robust design of deflection actions for Near Earth Objects (NEO). In particular, the case of deflection by means of Solar-pumped Laser ablation is studied here in detail. The basic idea behind Laser ablation is that of inducing a sublimation of the NEO surface, which produces a low thrust thereby slowly deviating the asteroid from its initial Earth threatening trajectory. This work investigates the integrated design of the Space-based Laser system and the deflection action generated by laser ablation under uncertainty. The integrated design is formulated as a multi-objective optimisation problem in which the deviation is maximised and the total system mass is minimised. Both the model for the estimation of the thrust produced by surface laser ablation and the spacecraft system model are assumed to be affected by epistemic uncertainties (partial or complete lack of knowledge). Evidence Theory is used to quantify these uncertainties and introduce them in the optimisation process. The propagation of the trajectory of the NEO under the laser-ablation action is performed with a novel approach based on an approximated analytical solution of Gauss’ Variational Equations. An example of design of the deflection of asteroid Apophis with a swarm of spacecraft is presented.