Picture of two heads

Open Access research that challenges the mind...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including those from the School of Psychological Sciences & Health - but also papers by researchers based within the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Investigation of the reaction impurities associated with methylamphetamine synthesized using the nagai method

Kunalan, Vanitha and Daeid, Niamh Nic and Kerr, William (2012) Investigation of the reaction impurities associated with methylamphetamine synthesized using the nagai method. Analytical Chemistry, 84 (13). pp. 5744-5752. ISSN 0003-2700

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The synthesis of methylamphetamine hydrochloride from l-ephedrine or d-pseudoephedrine hydrochloride via reduction with hydriodic acid and red phosphorus was investigated. Eighteen batches of methylamphetamine hydrochloride were synthesized in six replicate batches using three different reaction times. This allowed the investigation of the variation of impurities in the final product with reaction time. The results obtained have resolved previously conflicting impurity profile data reported in the literature for this synthesis route. The impurity profile was shown to change with reaction time and all previously. reported impurity components were identified but not in all batches. Additionally, 20 batches of methylamphetamine hydrochloride were synthesized from either from l-ephedrine or d-pseudoephedrine hydrochloride in reactions which were allowed to proceed for 24 h. The impurities present in the resulting batches were investigated, and route-specific impurities present in all batches were identified. Batch-to-batch fluctuations in the resultant chromatographic impurity profile, despite careful synthetic monitoring and control, were also noted.