Picture of a sphere with binary code

Making Strathclyde research discoverable to the world...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. It exposes Strathclyde's world leading Open Access research to many of the world's leading resource discovery tools, and from there onto the screens of researchers around the world.

Explore Strathclyde Open Access research content

In-plane elastic buckling of shallow parabolic arches under an external load and temperature changes

Cai, JianGou and Xu, Yixiang and Feng, Jian and Zhang, Jin (2012) In-plane elastic buckling of shallow parabolic arches under an external load and temperature changes. Journal of Structural Engineering, 138 (11). 1300–1309. ISSN 0733-9445

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

This paper studies the in-plane stability of rotationally restrained shallow arches subjected to a vertical uniform load and temperature changes below 100ഒ. The virtual work principle method is used to establish the non-linear equilibrium and buckling equations. Analytical solutions for the non-linear in-plane symmetric snap-through and asymmetric bifurcation critical loads are obtained. Then the effects of the uniform temperature field and temperature gradients on the in-plane stability for arches are studied. It has been found that the influence of temperature variations on the critical loads for both the symmetric snap-through and asymmetric bifurcation modes is significant. The critical loads increase with an increase of the uniform temperature field and a decrease of temperature gradients. Furthermore, the effect of temperature changes on the critical load increases with the span-rise ratio m of arches. It can also be found that increasing the stiffness of rotational springs will increase the effect of the uniform temperature field but reduce the effect of the temperature gradients.