Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.


Urban infrastructure-to-vehicle traffic data dissemination using UEP rateless codes

Stefanovic, C. and Vukobratovic, D. and Chiti, F. and Niccolai, L. and Crnojevic, V. and Fantacci, R. (2011) Urban infrastructure-to-vehicle traffic data dissemination using UEP rateless codes. IEEE Journal on Selected Areas in Communications, 29 (1). pp. 94-102. ISSN 0733-8716

Full text not available in this repository. Request a copy from the Strathclyde author


In this paper we propose an end-to-end solution for urban infrastructure-to-vehicle traffic data delivery based on a class of unequal error protection (UEP) rateless codes called expanding window fountain (EWF) codes. The proposed solution relies on attractive features that rateless codes introduce to networks with unpredictable dynamics: the universal capacity approaching property which is well-matched to time-varying behavior of wireless links, and the innovative nature of each encoded packet which makes both time-consuming retransmission and content-reconciliation mechanisms unnecessary. Furthermore, usage of EWF codes allows separation of delivered data in importance classes with different error protection and recovery time guarantees, enabling mobile users to retrieve more important information more reliably and in shorter time span, thus making the proposed solution suitable for time-critical services. The addressed urban communication scenario consists of large number of sensors that sample and relay traffic flow information to network of Access Points (APs). APs use the existing underlying communication infrastructure, such as metropolitan area networks (MANs), to exchange traffic flow data, encode it using EWF coding principles, and finally disseminate it to roaming vehicles that join the network service in an ad-hoc manner in order to retrieve information regarding the surrounding environment. The proposed approach is suitable for real-time applications, such as frequent periodic reporting of urban traffic conditions, that could be used by on-board computers to provide improved navigation for end-users.