Picture of a sphere with binary code

Making Strathclyde research discoverable to the world...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. It exposes Strathclyde's world leading Open Access research to many of the world's leading resource discovery tools, and from there onto the screens of researchers around the world.

Explore Strathclyde Open Access research content

Quadratic projection methods for approximating the spectrum of self-adjoint operators

Strauss, M. (2011) Quadratic projection methods for approximating the spectrum of self-adjoint operators. IMA Journal of Numerical Analysis, 31 (1). pp. 40-60. ISSN 0272-4979

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The pollution-free approximation of the spectrum for self-adjoint operators using a quadratic projection method has recently been studied. Higher-order pollution-free approximation can be achieved by combining this technique with a method due to Kato. To illustrate, an example from magnetohydrodynamics is considered. Whether or not this procedure converges to the whole spectrum is unknown. Combining the quadratic method with the Galerkin method, we derive procedures that do converge to the whole spectrum and without pollution.