Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Hybrid super electron donors - preparation and reactivity

Garnier, Jean and THOMSON, Douglas William and Zhou, Sheng-Ze and Jolly, Phillip I and Berlouis, Leonard E A and Murphy, John A (2012) Hybrid super electron donors - preparation and reactivity. Beilstein Journal of Organic Chemistry, 8. pp. 994-1002. ISSN 1860-5397

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Neutral organic electron donors, featuring pyridinylidene–imidazolylidene, pyridinylidene–benzimidazolylidene and imidazolylidene–benzimidazolylidene linkages are reported. The pyridinylidene–benzimidazolylidene and imidazolylidene–benzimidazolylidene hybrid systems were designed to be the first super electron donors to convert iodoarenes to aryl radicals at room temperature, and indeed both show evidence for significant aryl radical formation at room temperature. The stronger pyridinylidene–imidazolylidene donor converts iodoarenes to aryl anions efficiently under appropriate conditions (3 equiv of donor). The presence of excess sodium hydride base has a very important and selective effect on some of these electron-transfer reactions, and a rationale for this is proposed