Picture of a sphere with binary code

Making Strathclyde research discoverable to the world...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. It exposes Strathclyde's world leading Open Access research to many of the world's leading resource discovery tools, and from there onto the screens of researchers around the world.

Explore Strathclyde Open Access research content

Pattern avoidance in partial permutations

Claesson, A. and Jelinek, V. and Jelinkova, E. and Kitaev, S. (2011) Pattern avoidance in partial permutations. The Electronic Journal of Combinatorics, 18 (1). ISSN 1077-8926

[img]
Preview
PDF
partial_permutations.pdf - Submitted Version

Download (432kB) | Preview

Abstract

Motivated by the concept of partial words, we introduce an analogous concept of partial permutations. A partial permutation of length n with k holes is a sequence of symbols $\pi = \pi_1\pi_2 ... \pi_n$ in which each of the symbols from the set {1,2,...,n-k} appears exactly once, while the remaining k symbols of $\pi$ are "holes". We introduce pattern-avoidance in partial permutations and prove that most of the previous results on Wilf equivalence of permutation patterns can be extended to partial permutations with an arbitrary number of holes. We also show that Baxter permutations of a given length k correspond to a Wilf-type equivalence class with respect to partial permutations with (k-2) holes. Lastly, we enumerate the partial permutations of length n with k holes avoiding a given pattern of length at most four, for each n >= k >= 1.