Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Comparison of power and EMG during a 6-s all-out cycling between young and older women

Duffy, Charles and Stewart, D and Pecoraro, Fabrizio and Riches, Philip and Farina, Dario and Macaluso, Andrea (2012) Comparison of power and EMG during a 6-s all-out cycling between young and older women. Journal of Sport Sciences, 30. pp. 1311-1321. ISSN 0264-0414

[img] PDF (Published version)
2012_Duffy.pdf - Published Version
Restricted to Registered users only
Available under License Unspecified.

Download (507kB) | Request a copy from the Strathclyde author

Abstract

To investigate the effects of ageing on the neural control strategies governing sprint cycling on a friction-loaded cycleergometer, 10 older (aged 70–83yr) and 8 young (aged 19–35yr) healthy women completed seven 6-s all-out cycling trials against varying loads. Root mean square (RMS), median frequency and muscle fibre conduction velocity were determined from the vastus lateralis of the dominant limb during each pedal stroke. Peak power was 43% lower in the older group compared to the younger (p 5 0.001) and was accompanied by a significantly lower RMS (p 5 0.05). No differences were observed in the other electromyography (EMG) parameters between the groups (p 4 0.05). DRMS from the first to the sixth second during each trial was found to increase significantly with the development of power output in both groups (p 5 0.05). For the first time during an all-out 6-s cycle trial, it has been demonstrated that older women’s lower mechanical power output was accompanied by a significantly lower RMS, which indicates a decline in either the number of active of motor units or a reduced discharge rate. Hence, changes in motor units can be regarded as a contributory factor to the decline of muscle power with advancing age. Overall, though, similar neural strategies are adopted in both younger and older populations.