Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Characterization of InGaN and InAlN epilayers by microdiffraction X-Ray reciprocal space mapping

Kachkanov, V. and Dolbnya, I. P. and O'Donnell, K. P. and Lorenz, K. and Pereira, S. and Martin, R. W. and Edwards, P. R. and Watson, I. M. (2012) Characterization of InGaN and InAlN epilayers by microdiffraction X-Ray reciprocal space mapping. MRS Online Proceedings Library, 1396.

[img]
Preview
PDF
Kachkanov2012MRS1396.pdf - Final Published Version

Download (21MB) | Preview

Abstract

We report a study of InGaN and InAlN epilayers grown on GaN/Sapphire substrates by microfocused three-dimensional X-ray Reciprocal Space Mapping (RSM). The analysis of the full volume of reciprocal space, while probing samples on the microscale with a focused X-ray beam, allows us to gain uniquely valuable information about the microstructure of III-N alloy epilayers. It is found that “seed” InGaN mosaic nanocrystallites are twisted with respect to the ensemble average and strain free. This indicates that the growth of InGaN epilayers follows the Volmer-Weber mechanism with nucleation of “seeds” on strain fields generated by the a-type dislocations which are responsible for the twist of underlying GaN mosaic blocks. In the case of InAlN epilayer formation of composition gradient was observed at the beginning of the epitaxial growth.