Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Performance assessment of MIMO systems under partial information

Xia, H. and Majecki, Pawel and Ordys, A.W. and Grimble, M.J. (2004) Performance assessment of MIMO systems under partial information. In: Proceedings of the 2004 american control conference. Proceedings of the American Control Conference . IEEE, New York, pp. 3568-3573. ISBN 0780383354

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Minimum variance (MV) can characterize the most fundamental performance limitation of a system, owing to the existence of time-delays/infinite zeros. It has been widely used as a benchmark to assess the regulatory performance of control loops. For a SISO system, this benchmark can be estimated given the information of the system time delay. In order to compute the MIMO MV benchmark, the interactor matrix associated with the plant may be needed. However, the computation of the interactor matrix requires the knowledge of Markov parameter matrices of the plant, which is rather demanding for assessment purposes only. In this paper, we propose an upper bound of the MIMO MV benchmark which can be computed with the knowledge of the interactor matrix order. If the time delays between the inputs and outputs are known, a lower bound of the MIMO MV benchmark can also be determined.